Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Discretization of continuous stochastic processes is needed to numerically simulate them or to infer models from experimental time series. However, depending on the nature of the process, the same discretization scheme may perform very differently for the two tasks, if it is not accurate enough. Exact discretizations, which work equally well at any scale, are characterized by the property of invariance under coarse-graining. Motivated by this observation, we build an explicit renormalization group (RG) approach for Gaussian time series generated by autoregressive models. We show that the RG fixed points correspond to discretizations of linear SDEs, and only come in the form of first order Markov processes or non-Markovian ones. This fact provides an alternative explanation of why standard delay-vector embedding procedures fail in reconstructing partially observed noise-driven systems. We also suggest a possible effective Markovian discretization for the inference of partially observed underdamped equilibrium processes based on the exploitation of the Einstein relation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.105.044133 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!