Background: Previous studies on plant long noncoding RNAs (lncRNAs) lacked consistency and suffered from many factors like heterogeneous data sources and experimental protocols, different plant tissues, inconsistent bioinformatics pipelines, etc. For example, the sequencing of RNAs with poly(A) tails excluded a large portion of lncRNAs without poly(A), and use of regular RNA-sequencing technique did not distinguish transcripts' direction for lncRNAs. The current study was designed to systematically discover and analyze lncRNAs across eight evolutionarily representative plant species, using strand-specific (directional) and whole transcriptome sequencing (RiboMinus) technique.

Results: A total of 39,945 lncRNAs (25,350 lincRNAs and 14,595 lncNATs) were identified, which showed molecular features of lncRNAs that are consistent across divergent plant species but different from those of mRNA. Further, transposable elements (TEs) were found to play key roles in the origination of lncRNA, as significantly large number of lncRNAs were found to contain TEs in gene body and promoter region, and transcription of many lncRNAs was driven by TE promoters. The lncRNA sequences were divergent even in closely related species, and most plant lncRNAs were genus/species-specific, amid rapid turnover in evolution. Evaluated with PhastCons scores, plant lncRNAs showed similar conservation level to that of intergenic sequences, suggesting that most lincRNAs were young and with short evolutionary age. INDUCED BY PHOSPHATE STARVATION (IPS) was found so far to be the only plant lncRNA group with conserved motifs, which may play important roles in the adaptation of terrestrial life during migration from aquatic to terrestrial. Most highly and specially expressed lncRNAs formed co-expression network with coding genes, and their functions were believed to be closely related to their co-expression genes.

Conclusion: The study revealed novel features and complexity of lncRNAs in plants through systematic analysis, providing important insights into the origination and evolution of plant lncRNAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9118565PMC
http://dx.doi.org/10.1186/s12864-022-08602-9DOI Listing

Publication Analysis

Top Keywords

lncrnas
13
plant species
12
plant lncrnas
12
plant
10
plant long
8
transcriptome sequencing
8
evolutionarily representative
8
representative plant
8
revealing novel
4
novel complexity
4

Similar Publications

Crosstalk between non-coding RNAs and programmed cell death in colorectal cancer: implications for targeted therapy.

Epigenetics Chromatin

January 2025

Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.

Background: Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD).

View Article and Find Full Text PDF

Regulatory role of lnc-MAP3K13-3:1 on miR-6894-3p and SHROOM2 in modulating cellular dynamics in hepatocellular carcinoma.

BMC Cancer

January 2025

Jiangxi Provincial Key Laboratory of Child Development and Genetics, Jiangxi Provincial Children's Hospital, No. 122 of YangMing Road, DongHu District, NanChang, 330006, China.

Background: Hepatocellular carcinoma (HCC) is a prevalent primary liver malignancy and a leading cause of cancer-related mortality worldwide. Despite advancements in therapeutic strategies, the 5-year survival rate for individuals undergoing curative resection remains between 10% and 15%. Consequently, identifying molecular targets that specifically inhibit the proliferation and metastasis of HCC cells is critical for improving treatment outcomes.

View Article and Find Full Text PDF

Background: Muscle and adipose tissue are the most critical indicators of beef quality, and their development and function are regulated by noncoding RNAs (ncRNAs). However, the differential regulatory mechanisms of ncRNAs in muscle and adipose tissue remain unclear.

Results: In this study, 2,343 differentially expressed mRNAs (DEMs), 235 differentially expressed lncRNAs (DELs), 95 differentially expressed circRNAs (DECs) and 54 differentially expressed miRNAs (DEmiRs) were identified in longissimus dorsi muscle (LD), subcutaneous fat (SF) and perirenal fat (VF) in Qinchuan beef cattle.

View Article and Find Full Text PDF

A fishnet between nasopharyngeal carcinoma and resistance: the competing endogenous RNA network.

Curr Treat Options Oncol

January 2025

Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China.

Chemotherapy and radiotherapy (chemo-/radiotherapy) have advanced as the main treatment modalities for nasopharyngeal carcinoma (NPC), improving patient survival rates. However, chemo-/radiotherapy resistance in NPC cells has emerged as a key factor contributing to poor prognosis. Recently, competing endogenous RNA networks (ceRNETs) have garnered attention for their potential clinical value in studying chemo-/radiotherapy resistance.

View Article and Find Full Text PDF

A predictive model for long-term survival is needed, and mitochondrial dysfunction is a key feature of cancer metabolism, though its link to glioma is not well understood. The aim of this study was to identify the molecular characteristics associated with glioma prognosis and explore its potential function. We analyzed RNA-seq data from The Cancer Genome Atlas and identified differentially expressed mitochondrial long noncoding RNAs (lncRNAs) using R's 'limma' package.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!