Cardiovascular disease is the leading cause of death worldwide. New therapeutic strategies are aimed to modulate the athero-inflammatory process that partially orchestrates underlying vascular damage. Peripheral blood circulating cells include different immune cells with a central role in the development of the atherogenic inflammatory response. The anti-aging protein α-Klotho has been related to protective effects against CVD. KL is expressed in monocytes, macrophages, and lymphocytes where it exerts anti-inflammatory effects. In this work, we analyse the relationships of the levels of inflammatory markers with the expression of the KL gene in PBCCs and with the serum levels of soluble KL in atherosclerotic vascular disease. For this, we conducted a cross-sectional single-center case-control study including a study group of 76 CVD patients and a control group of 16 cadaveric organ donors without medical antecedent or study indicating CVD. Vascular artery fragments and whole blood and serum samples were obtained during elective or organ retrieval surgery. Serum levels of sKL, TNFα and IL10, and gene expression levels of KL, TNF, IL10, NFKB1, DNMT1, and DNMT3A in PBCCs were measured. In these cells, we also determined KL promoter methylation percentage. Histological and immunohistochemical analyses were employed to visualize atherosclerotic lesions and to measure IL10 and TNFα levels in vascular fragments. Patients with CVD presented higher values of proinflammatory markers both at systemic and in the vasculature and in the PBCCs, compared to the control group. In PBCCs, CVD patients also presented lower gene expression levels of KL gene (56.4% difference, P < 0.001), higher gene expression levels of DNMT1 and DNMT3A (P < 0.0001, for both) and a higher methylation status of in the promoter region of KL (34.1 ± 4.1% vs. 14.6 ± 3.4%, P < 0.01). In PBCCs and vasculature, KL gene expression correlated inversely with pro-inflammatory markers and directly with anti-inflammatory markers. sKL serum levels presented similar associations with the expression levels of pro- and anti-inflammatory markers in PBCCs. The differences in KL expression levels in PBCCs and in serum sKL levels with respect to control group was even greater in those CVD patients with macroscopically observable atheromatous plaques. We conclude that promoter methylation-mediated downregulation of KL gene expression in PBCCs is associated with the pro-inflammatory status in atherosclerotic vascular disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120199PMC
http://dx.doi.org/10.1038/s41598-022-12548-zDOI Listing

Publication Analysis

Top Keywords

gene expression
20
expression levels
20
atherosclerotic vascular
12
vascular disease
12
serum levels
12
cvd patients
12
control group
12
levels
11
peripheral blood
8
blood circulating
8

Similar Publications

Unveiling the role of OsSAP17: Enhancing plant resistance to drought and salt.

Plant Physiol Biochem

December 2024

College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Monitoring for Heavy Metal Pollutants, Ministry of Ecology and Environment, Hunan, 410019, China. Electronic address:

With the intensification of climate change coupled with the inadequate agricultural management in certain regions, plants face numerous challenges due to various abiotic stresses. Stress associated proteins (SAPs) are essential functional genes in plants for coping with stress. This research provides a functional analysis of OsSAP17, a protein belonging to the SAP family in rice.

View Article and Find Full Text PDF

Exploring markers in nursing care of prostate cancer.

Medicine (Baltimore)

January 2025

Urology and Metabolic Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Prostate cancer is epithelial malignant prostate hyperplasia caused by a tumor. We found prostate cancer GSE141551 and GSE200879 profiles from gene expression omnibus database, followed by differentially expressed genes (DEGs) analysis, weighted gene co-expression network analysis, protein-protein interaction analysis, gene function enrichment analysis, and comparative toxicology database analysis. Finally, the gene expression heat map was drawn, and miRNA information regulating core DEGs was retrieved.

View Article and Find Full Text PDF

The roles of STAT1, CASP8, and MYD88 in the care of ischemic stroke.

Medicine (Baltimore)

January 2025

Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Ischemic stroke is caused by blockage of blood vessels in brain, affecting normal function. The roles of Signal Transformer and Activator of Transcription 1 (STAT1), CASP8, and MYD88 in ischemic stroke and its care are unclear. The ischemic stroke datasets GSE16561 and GSE180470 were found from the Gene Expression Omnibus database.

View Article and Find Full Text PDF

T-helper 17 (Th17) cells significantly influence the onset and advancement of malignancies. This study endeavor focused on delineating molecular classifications and developing a prognostic signature grounded in Th17 cell differentiation-related genes (TCDRGs) using machine learning algorithms in head and neck squamous cell carcinoma (HNSCC). A consensus clustering approach was applied to The Cancer Genome Atlas-HNSCC cohort based on TCDRGs, followed by an examination of differential gene expression using the limma package.

View Article and Find Full Text PDF

Dissecting the Genetic Basis of Preharvest Sprouting in Rice Using a Genome-Wide Association Study.

J Agric Food Chem

January 2025

Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China.

Preharvest sprouting (PHS) is an unfavorable trait in cereal crops that significantly reduces grain yield and quality. However, the regulatory mechanisms underlying this complex trait are still largely unknown. Here, 276 rice accessions from the 3000 Rice Genomes Project were used to perform a genome-wide association study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!