Magnetoelectric materials hold untapped potential to revolutionize biomedical technologies. Sensing of biophysical processes in the brain is a particularly attractive application, with the prospect of using magnetoelectric nanoparticles (MENPs) as injectable agents for rapid brain-wide modulation and recording. Recent studies have demonstrated wireless brain stimulation in vivo using MENPs synthesized from cobalt ferrite (CFO) cores coated with piezoelectric barium titanate (BTO) shells. CFO-BTO core-shell MENPs have a relatively high magnetoelectric coefficient and have been proposed for direct magnetic particle imaging (MPI) of brain electrophysiology. However, the feasibility of acquiring such readouts has not been demonstrated or methodically quantified. Here we present the results of implementing a strain-based finite element magnetoelectric model of CFO-BTO core-shell MENPs and apply the model to quantify magnetization in response to neural electric fields. We use the model to determine optimal MENPs-mediated electrophysiological readouts both at the single neuron level and for MENPs diffusing in bulk neural tissue for in vivo scenarios. Our results lay the groundwork for MENP recording of electrophysiological signals and provide a broad analytical infrastructure to validate MENPs for biomedical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120189PMC
http://dx.doi.org/10.1038/s41598-022-12303-4DOI Listing

Publication Analysis

Top Keywords

magnetoelectric nanoparticles
8
cfo-bto core-shell
8
core-shell menps
8
menps
6
magnetoelectric
5
silico assessment
4
assessment electrophysiological
4
electrophysiological neuronal
4
neuronal recordings
4
recordings mediated
4

Similar Publications

Minimally invasive medical treatments for peripheral nerve stimulation are critically needed to minimize surgical risks, enhance the precision of therapeutic interventions, and reduce patient recovery time. Magnetoelectric nanoparticles (MENPs), known for their unique ability to respond to both magnetic and electric fields, offer promising potential for precision medicine due to their dual tunable functionality. In this study a multi-physics modeling of the MENPs was performed, assessing their capability to be targeted through external magnetic fields and become electrically activated.

View Article and Find Full Text PDF

Introduction: The effectiveness of pharmaceutical treatment methods is vital in cancer treatment. In this context, various targeted drug delivery systems are being developed to minimize or eliminate existing deficiencies and harms. This study aimed to model the interaction of MEN-based drug-targeting systems with cancer cells and determine the properties of interacting MENs.

View Article and Find Full Text PDF

Temperature-Dependent Cytokine Neutralization Induced by Magnetoelectric Nanoparticles: An In Silico Study.

Int J Mol Sci

December 2024

Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council of Italy (CNR), 20133 Milan, Italy.

Inflammatory cytokines cooperate to maintain normal immune homeostasis, performing both a protective and a pro-inflammatory action in different body districts. However, their excessive persistence or deregulated expression may degenerate into tissue chronic inflammatory status. Advanced therapies should be designed to deploy selective cytokine neutralizers in the affected tissues.

View Article and Find Full Text PDF
Article Synopsis
  • The text indicates that there is an error in a previously published article, specifically one identified by the DOI number 10.1371/journal.pone.0274676.
  • This correction aims to address and clarify any misinformation or inaccuracies in that article.
  • Such corrections are important for maintaining the integrity and accuracy of scientific literature.
View Article and Find Full Text PDF

Unlabelled: This study presents the first in vivo and in vitro evidence of an externally controlled, predictive, MRI-based nanotheranostic agent capable of cancer cell specific targeting and killing via irreversible electroporation (IRE) in solid tumors. The rectangular-prism-shaped magnetoelectric nanoparticle is a smart nanoparticle that produces a local electric field in response to an externally applied magnetic field. When externally activated, MENPs are preferentially attracted to the highly conductive cancer cell membranes, which occurs in cancer cells because of dysregulated ion flux across their membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!