Synovial fluid-derived mesenchymal stem cells (SFMSCs) play important regulatory roles in the physiological balance of the temporomandibular joint. Interleukin (IL)-1β regulates the biological behavior of SFMSCs; however, the effects of IL-1β on long noncoding RNA (lncRNA) and mRNA expression in SFMSCs in the temporomandibular joint are unclear. Here, we evaluated the lncRNA and mRNA expression profiles of IL-1β-stimulated SFMSCs. Using microarrays, we identified 264 lncRNAs (203 upregulated, 61 downregulated) and 258 mRNAs (201 upregulated, 57 downregulated) that were differentially expressed after treatment with IL-1β (fold changes ≥ 2, P < 0.05). Kyoto Encyclopedia of Genes and Genomes pathway analysis found that one of the most significantly enriched pathways was the NF-κB pathway. Five paired antisense lncRNAs and mRNAs, eight paired enhancer lncRNAs and mRNAs, and nine paired long intergenic noncoding RNAs and mRNAs were predicted to be co-expressed. A network constructed by the top 30 K-score genes was visualized and evaluated. We found a co-expression relationship between RP3-467K16.4 and IL8 and between LOC541472 and IL6, which are related to NF-κB pathway activation. Overall, our results provide important insights into changes in lncRNA and mRNA expression in IL-1β-stimulated SFMSCs, which can facilitate the identification of potential therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120201 | PMC |
http://dx.doi.org/10.1038/s41598-022-12190-9 | DOI Listing |
Clinics (Sao Paulo)
January 2025
Department of Otolaryngology and Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Anhui Province, China. Electronic address:
Objective: TRIB3 has been confirmed to participate in and regulate biological metabolic activities in head and neck tumors such as nasopharyngeal carcinoma and oropharyngeal carcinoma, so the purpose of this study was to explore whether there is a correlation between TRIB3 and Laryngeal Squamous Cell Carcinoma (LSCC) and to preliminarily explore the biological characteristics of TRIB3 in LSCC.
Methods: TRIB3 expression in the LSCC was analyzed based on The Cancer Genome Atlas (TCGA) database. CCK-8 assay, Colony Formation Assay, wound healing assay, and Transwell assay were performed to investigate the roles of TRIB3 in the proliferation, invasion and metastasis of LSCC.
ACS Nano
January 2025
Department of Urology, Peking University First Hospital, Beijing 100034, China.
Although considered an "eco-friendly" biodegradable plastic, polylactic acid (PLA) microplastic (PLA-MP) poses a growing concern for human health, yet its effects on male reproductive function remain underexplored. This study investigated the reproductive toxicity of PLA in male mice and its potential mechanisms. To this end, our in vivo and in vitro experiments demonstrated that after degradation in the digestive system, a significant number of PLA-MP-derived nanoparticles could penetrate the blood-testis barrier (BTB) and localize within the spermatogenic microenvironment.
View Article and Find Full Text PDFDelayed fracture healing (DFH), a common complication of post-fracture surgery, exhibits an incompletely understood pathogenesis. The present study endeavors to investigate the roles and underlying mechanisms of miR-656-3p and Bone Morphogenetic Protein-2 (BMP-2) in DFH. It was recruited 94 patients with normal fracture healing (NFH) and 88 patients with DFH of the femoral neck.
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.
Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.
Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.
Neuroreport
January 2025
Department of Neurosurgery.
Nowadays, intracerebral hemorrhage (ICH) is the main cause of death and disability, and motor impairment is a common sequel to ICH. Electroacupuncture (EA) has been widely used for functional recovery after ICH. However, its role and associated regulatory mechanisms in rehabilitation after ICH remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!