Reliability and generalization of gait biometrics using 3D inertial sensor data and 3D optical system trajectories.

Sci Rep

Artificial Intelligence Lab. (Recod.ai), Institute of Computing, University of Campinas, Campinas, Brazil.

Published: May 2022

Particularities in the individuals' style of walking have been explored for at least three decades as a biometric trait, empowering the automatic gait recognition field. Whereas gait recognition works usually focus on improving end-to-end performance measures, this work aims at understanding which individuals' traces are more relevant to improve subjects' separability. For such, a manifold projection technique and a multi-sensor gait dataset were adopted to investigate the impact of each data source characteristics on this separability. Assessments have shown it is hard to distinguish individuals based only on their walking patterns in a subject-based identification scenario. In this setup, the subjects' separability is more related to their physical characteristics than their movements related to gait cycles and biomechanical events. However, this study's results also points to the feasibility of learning identity characteristics from individuals' walking patterns learned from similarities and differences between subjects in a verification setup. The explorations concluded that periodic components occurring in frequencies between 6 and 10 Hz are more significant for learning these patterns than events and other biomechanical movements related to the gait cycle, as usually explored in the literature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120026PMC
http://dx.doi.org/10.1038/s41598-022-12452-6DOI Listing

Publication Analysis

Top Keywords

gait recognition
8
subjects' separability
8
walking patterns
8
movements gait
8
gait
6
reliability generalization
4
generalization gait
4
gait biometrics
4
biometrics inertial
4
inertial sensor
4

Similar Publications

A 41-year-old man with a history of obesity, hypertension, and smoking suffered from numbness and weakness in both lower limbs. He was diagnosed with ossification of the posterior longitudinal ligament and ligamentum flavum in the cervical and thoracic spine by X-rays, CT, and MRI. The patient underwent laminectomies at T2 and T3 levels, along with posterior fusion from T1 to T4, to address an upper thoracic spine lesion causing sensory deficits up to T5 and gait disturbances.

View Article and Find Full Text PDF

Tears of the posterior medial meniscus root (PMMR) are common in older patients and reportedly contribute to rapid joint degeneration over time. Recognition of these tear types and the appropriate diagnosis through clinical exam and diagnostic imaging have improved significantly in recent years, as have surgical techniques to address them. Standardized post-operative rehabilitation protocols specific to PMMR repair have not been established or well understood in the scientific literature.

View Article and Find Full Text PDF

Two-dimensional identification of lower limb gait features based on the variational modal decomposition of sEMG signal and convolutional neural network.

Gait Posture

December 2024

Engineering Research Center of the Ministry of Education for Intelligent Rehabilitation Equipment and Detection Technologies, Hebei University of Technology, Tianjin 300401, PR China; Hebei Key Laboratory of Robot Sensing and Human-robot Interaction, Hebei University of Technology, Tianjin 300401, PR China; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, PR China. Electronic address:

Background: Gait feature recognition is crucial to improve the efficiency and coordination of exoskeleton assistance. The recognition methods based on surface electromyographic (sEMG) signals are popular. However, the recognition accuracy of these methods is poor due to ignoring the correlation of the time series of sEMG signals.

View Article and Find Full Text PDF

The rhythm of horse gaits.

Ann N Y Acad Sci

December 2024

Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.

What makes animal gaits so audibly rhythmic? To answer this question, we recorded the footfall sound of 19 horses and quantified the rhythmic differences in the temporal structure of three natural gaits: walk, trot, and canter. Our analyses show that each gait displays a strikingly specific rhythmic pattern and that all gaits are organized according to small-integer ratios, those found when adjacent temporal intervals are related by a mathematically simple relationship of integer numbers. Walk and trot exhibit an isochronous structure (1:1)-similar to a ticking clock-while canter is characterized by three small-integer ratios (1:1, 1:2, 2:1).

View Article and Find Full Text PDF

Computer Vision-Based Gait Recognition on the Edge: A Survey on Feature Representations, Models, and Architectures.

J Imaging

December 2024

Department of Mechatronics Engineering, Universidad Católica Boliviana "San Pablo", La Paz 4807, Bolivia.

Computer vision-based gait recognition (CVGR) is a technology that has gained considerable attention in recent years due to its non-invasive, unobtrusive, and difficult-to-conceal nature. Beyond its applications in biometrics, CVGR holds significant potential for healthcare and human-computer interaction. Current CVGR systems often transmit collected data to a cloud server for machine learning-based gait pattern recognition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!