High current density electroreduction of CO into formate with tin oxide nanospheres.

Sci Rep

National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA, 15236-0940, USA.

Published: May 2022

In this study, we demonstrate three-dimensional (3D) hollow nanosphere electrocatalysts for CO conversion into formate with excellent H-Cell performance and industrially-relevant current density in a 25 cm membrane electrode assembly electrolyzer device. Varying calcination temperature maximized formate production via optimizing the crystallinity and particle size of the constituent SnO nanoparticles. The best performing SnO nanosphere catalysts contained ~ 7.5 nm nanocrystals and produced 71-81% formate Faradaic efficiency (FE) between -0.9 V and -1.3 V vs. the reversible hydrogen electrode (RHE) at a maximum formate partial current density of 73 ± 2 mA cm at -1.3 V vs. RHE. The higher performance of nanosphere catalysts over SnO nanoparticles and commercially-available catalyst could be ascribed to their initial structure providing higher electrochemical surface area and preventing extensive nanocrystal growth during CO reduction. Our results are among the highest performance reported for SnO electrocatalysts in aqueous H-cells. We observed an average 68 ± 8% FE over 35 h of operation with multiple on/off cycles. In situ Raman and time-dependent X-ray diffraction measurements identified metallic Sn as electrocatalytic active sites during long-term operation. Further evaluation in a 25 cm electrolyzer cell demonstrated impressive performance with a sustained current density of 500 mA cm and an average 75 ± 6% formate FE over 24 h of operation. Our results provide additional design concepts for boosting the performance of formate-producing catalysts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120473PMC
http://dx.doi.org/10.1038/s41598-022-11890-6DOI Listing

Publication Analysis

Top Keywords

current density
16
sno nanoparticles
8
nanosphere catalysts
8
formate
6
performance
5
high current
4
density
4
density electroreduction
4
electroreduction formate
4
formate tin
4

Similar Publications

Climate change could amplify weak synchrony in large marine ecosystems.

Proc Natl Acad Sci U S A

January 2025

Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045.

Climate change is increasing the frequency of large-scale, extreme environmental events and flattening environmental gradients. Whether such changes will cause spatially synchronous, large-scale population declines depends on mechanisms that limit metapopulation synchrony, thereby promoting rescue effects and stability. Using long-term data and empirical dynamic models, we quantified spatial heterogeneity in density dependence, spatial heterogeneity in environmental responses, and environmental gradients to assess their role in inhibiting synchrony across 36 marine fish and invertebrate species.

View Article and Find Full Text PDF

Dual-Anion-Rich Polymer Electrolytes for High-Voltage Solid-State Lithium Metal Batteries.

ACS Nano

January 2025

Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.

Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.

View Article and Find Full Text PDF

Cardiac MR image reconstruction using cascaded hybrid dual domain deep learning framework.

PLoS One

January 2025

Medical Image Processing Research Group (MIPRG), Dept. of Elect. & Comp. Engineering, COMSATS University Islamabad, Islamabad, Pakistan.

Recovering diagnostic-quality cardiac MR images from highly under-sampled data is a current research focus, particularly in addressing cardiac and respiratory motion. Techniques such as Compressed Sensing (CS) and Parallel Imaging (pMRI) have been proposed to accelerate MRI data acquisition and improve image quality. However, these methods have limitations in high spatial-resolution applications, often resulting in blurring or residual artifacts.

View Article and Find Full Text PDF

Radiative Warming Glass for High-Latitude Cold Regions.

Adv Sci (Weinh)

January 2025

Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China.

Traditional window glazing, with inherently adverse energy-efficient optical properties, leads to colossal energy losses. Energy-saving glass requires a customized optical design for different climate zones. Compared with the widely researched radiative cooling technology which is preferable to be used in low-altitude hot regions; conversely in high-latitude cold regions, high solar transmittance (T) and low mid-infrared thermal emissivity (ε) are the key characteristics of high-performance radiative warming window glass, while the current low-emissivity (low-e) glass is far from ideal.

View Article and Find Full Text PDF

Light, strong, and radiation-tolerant materials are essential for advanced nuclear systems and aerospace applications. However, the comprehensive properties of current radiation-tolerant materials are far from being satisfactory in harsh operating environments. In this study, a high-throughput-designed NbVTaSi refractory eutectic medium entropy alloy realizes the controllable formation of the β-NbSi phase with a high content and has outstanding comprehensive properties, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!