A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Plant beta-diversity across biomes captured by imaging spectroscopy. | LitMetric

Plant beta-diversity across biomes captured by imaging spectroscopy.

Nat Commun

Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montréal, QC, H1X 2B2, Canada.

Published: May 2022

Monitoring the rapid and extensive changes in plant species distributions occurring worldwide requires large-scale, continuous and repeated biodiversity assessments. Imaging spectrometers are at the core of novel spaceborne sensor fleets designed for this task, but the degree to which they can capture plant species composition and diversity across ecosystems has yet to be determined. Here we use imaging spectroscopy and vegetation data collected by the National Ecological Observatory Network (NEON) to show that at the landscape level, spectral beta-diversity-calculated directly from spectral images-captures changes in plant species composition across all major biomes in the United States ranging from arctic tundra to tropical forests. At the local level, however, the relationship between spectral alpha- and plant alpha-diversity was positive only at sites with high canopy density and large plant-to-pixel size. Our study demonstrates that changes in plant species composition and diversity can be effectively and reliably assessed with imaging spectroscopy across terrestrial ecosystems at the beta-diversity scale-the spatial scale of spaceborne missions-paving the way for close-to-real-time biodiversity monitoring at the planetary level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120498PMC
http://dx.doi.org/10.1038/s41467-022-30369-6DOI Listing

Publication Analysis

Top Keywords

plant species
16
imaging spectroscopy
12
changes plant
12
species composition
12
composition diversity
8
plant
6
plant beta-diversity
4
beta-diversity biomes
4
biomes captured
4
imaging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!