RNA supply drives physiological granule assembly in neurons.

Nat Commun

BioMedical Center, Dept. Cell Biology and Anatomy, Medical Faculty, Ludwig Maximilians University, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany.

Published: May 2022

Membraneless cytoplasmic condensates of mRNAs and proteins, known as RNA granules, play pivotal roles in the regulation of mRNA fate. Their maintenance fine-tunes time and location of protein expression, affecting many cellular processes, which require complex protein distribution. Here, we report that RNA granules-monitored by DEAD-Box helicase 6 (DDX6)-disassemble during neuronal maturation both in cell culture and in vivo. This process requires neuronal function, as synaptic inhibition results in reversible granule assembly. Importantly, granule assembly is dependent on the RNA-binding protein Staufen2, known for its role in RNA localization. Altering the levels of free cytoplasmic mRNA reveals that RNA availability facilitates DDX6 granule formation. Specifically depleting RNA from DDX6 granules confirms RNA as an important driver of granule formation. Moreover, RNA is required for DDX6 granule assembly upon synaptic inhibition. Together, this data demonstrates how RNA supply favors RNA granule assembly, which not only impacts subcellular RNA localization but also translation-dependent synaptic plasticity, learning, and memory.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120520PMC
http://dx.doi.org/10.1038/s41467-022-30067-3DOI Listing

Publication Analysis

Top Keywords

granule assembly
20
rna
11
rna supply
8
synaptic inhibition
8
rna localization
8
ddx6 granule
8
granule formation
8
granule
7
assembly
5
supply drives
4

Similar Publications

G3BP-driven RNP granules promote inhibitory RNA-RNA interactions resolved by DDX3X to regulate mRNA translatability.

Mol Cell

December 2024

Biotechnology Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden 01307 Saxony, Germany. Electronic address:

Ribonucleoprotein (RNP) granules have been linked to translation regulation and disease, but their assembly and regulatory mechanisms are not well understood. Here, we show that the RNA-binding protein G3BP1 preferentially interacts with unfolded RNA, driving the assembly of RNP granule-like condensates that establish RNA-RNA interactions. These RNA-RNA interactions limit the mobility and translatability of sequestered mRNAs and stabilize the condensates.

View Article and Find Full Text PDF

Achieving high shielding effectiveness in electromagnetic shielding materials relies heavily on high conductivity, yet simultaneously enhancing the absorption loss remains a persistent challenge. Consequently, the study successfully creates efficient electromagnetic shielding composite films with a unique grape-like bunch structure of hollow nanosilver (HCAF) through layer-by-layer assembly. The utilization of poly(dopamine) (PDA) to anchor nanosilver granules (AgNPs) onto cellulose nanofibers (CNF) results in the formation of CNF@PDA@AgNPs.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles (TiO NPs) are among the most prevalent nanomaterials utilized in industrial and medical fields. However, their impact on spermatogenesis and male fertility remains insufficiently characterized. This study addresses the reproductive toxicity of TiO NPs and elucidates the underlying molecular mechanisms involved.

View Article and Find Full Text PDF

To date, seven human coronaviruses (HCoVs) have been identified. Four of these viruses typically manifest as a mild respiratory disease, whereas the remaining three can cause severe conditions that often result in death. The reasons for these differences remain poorly understood, but they may be related to the properties of individual viral proteins.

View Article and Find Full Text PDF

Decoding the Molecular Grammar of TIA1-Dependent Stress Granules in Proteostasis and Welander Distal Myopathy Under Oxidative Stress.

Cells

November 2024

Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, 28049 Madrid, Spain.

T-cell intracellular antigen 1 (TIA1) is an RNA-binding protein (RBP) that plays a multifunctional role in RNA metabolism. TIA1 has three RNA-Recognition Motifs (RRMs) and a prion-like carboxyl C-terminal domain (LCD) with intrinsically disordered regions (IDR) implicated in the dynamics (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!