The existing strategies for the determination of synthetic food colorants (FCs) in manufactured foods are highly relied on specialized instruments and skilled personnel which are limited by the high technical threshold and instrumentation cost. Herein, highly branched pipette tips (PTs) were fabricated as a robust all-in-one device for high-performance extraction and visual detection of FCs via handy aspiration and dispensing procedures of pipette controller. The density of extraction groups and inner specific surface area of PTs greatly increased after facile physical coating and subsequent layer-by-layer branching reactions, and the maximum increment in binding capacity of PTs was exceeded 300 times at 8-10 iterations of branching layers, enabling the PTs to be colored just by short-time extraction of FCs and to achieve the instrument-independent visual detection of FCs by virtue of their outstanding PT-SPE performance. As a proof-of-concept, the in-situ PT-based solid phase extraction (PT-SPE) with high recoveries (from 91.73 ± 4.76% to 99.90 ± 4.14%) and semiquantitative naked-eye detection of FCs (Allura red and brilliant blue) in real beverages were experimentally demonstrated to be highly feasible by comparison with classical techniques like spectrophotometry, HPLC, and mass spectrometry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2022.339901 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!