This tutorial demonstrates how to exploit the second-order advantage on excitation-emission fluorescence matrices (EEFMs) acquired from sensing platforms based on analyte-triggered semiconductor quantum dots (QDs) fluorescence modulation (quenching/enhancing). The advantage in processing such second-order EEFMs data from complex samples, seeking successful quantification, is comprehensively addressed. It is worth emphasizing that, aiming to exploit the second-order advantage, the selection of the most appropriate advanced chemometric model should rely on the matching between the data structure and the physicochemical chemometric model assumption. In this sense, the achievement of second-order advantage after EEFMs' processing is extensively addressed throughout this tutorial taking into consideration three different analytical situations, each involving a specific data structure: i) parallel factor analysis (PARAFAC), which is applied in a real dataset stacked in a three-way data array containing a trilinear data structure acquired from QDs-based detection with non-selective species; ii) multivariate curve resolution - alternating least-squares (MCR-ALS), which is also employed in a real dataset arranged in an augmented data matrix containing non-trilinear data structure acquired from QDs-based detection with a single breaking mode caused by background signals; iii) unfolded partial least-squares with residual bilinearization (U-PLS/RBL), which is applied in a dataset containing non-trilinear data acquired from a classical fluorescence system with two breaking modes caused by inner filter effect (IFE) in both instrumental modes (excitation and emission). The latter challenging data structure can be acquired via fluorescence quenching from IFE-based sensing platforms and chemometrically handled in two main steps. First, a set of calibration EEFMs data is converted into an unfolded data matrix during the unfolding process, followed by applying U-PLS model. Second, a post-calibration procedure using RBL analysis is applied to a test sample of EEFM maintained in its matrix form, in order to handle potential interferents. In the last section, the state-of-the-art of second-order EEFMs data acquired from semiconductor QDs-based sensing platforms and coupled to multi-way fluorescence data processing to accomplish a successful quantification, even with substantial interfering species, is critically reviewed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2021.339216 | DOI Listing |
BMC Health Serv Res
January 2025
Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
Background: This mixed methods study identified needed refinements to a telehealth-delivered cultural and linguistic adaptation of Meaning-Centered Psychotherapy for Chinese patients with advanced cancer (MCP-Ch) to enhance acceptability, comprehensibility, and implementation of the intervention in usual care settings, guided by the Ecological Validity Model (EVM) and the Practical, Robust Implementation and Sustainability Model (PRISM).
Methods: Fifteen purposively sampled mental health professionals who work with Chinese cancer patients completed surveys providing Likert-scale ratings on acceptability and comprehensibility of MCP-Ch content (guided by the EVM) and pre-implementation factors (guided by PRISM), followed by semi-structured interviews. Survey data were descriptively summarized and linked to qualitative interview data.
Genome Med
January 2025
Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.
Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.
Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.
J Cheminform
January 2025
Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Friedrich-Hirzebruch-Allee 5/6, 53115, Bonn, Germany.
Analogue series (AS) are generated during compound optimization in medicinal chemistry and are the major source of structure-activity relationship (SAR) information. Pairs of active AS consisting of compounds with corresponding substituents and comparable potency progression represent SAR transfer events for the same target or across different targets. We report a new computational approach to systematically search for SAR transfer series that combines an AS alignment algorithm with context-depending similarity assessment based on vector embeddings adapted from natural language processing.
View Article and Find Full Text PDFHarm Reduct J
January 2025
School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
Background: The introduction of Direct-Acting Antivirals (DAAs) transformed Hepatitis C (HCV) treatment, despite this uptake of DAAs remains lower than required to meet the WHO Sustainable Development Goal (3.3). Treatment with interferon was suggested to be able to deliver important outcomes for people who use drugs in addition to a viral cure, such as social redemption, and shift from a stigmatised identity.
View Article and Find Full Text PDFGenome-wide association studies (GWAS) have identified genetic variants robustly associated with asthma. A potential near-term clinical application is to calculate polygenic risk score (PRS) to improve disease risk prediction. The value of PRS, as part of numerous multi-source variables used to define asthma, remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!