Eversa® Transform 2.0 lipase used as biocatalyst to biodiesel (fatty acid methyl esters - FAME) synthesis has been the target of interesting studies due to its thermostability and cost-effectiveness. In these researches, data about reaction conditions that result in satisfactory yields were investigated. Nevertheless, kinetic and thermodynamic parameters considering this enzyme are scarce. This paper presents an estimation of kinetic and thermodynamic parameters for the Eversa® Transform 2.0-mediated hydroesterification to FAME synthesis. Kinetic studies were performed for different methanol, water and lipase loads in distinct temperatures. Parameters adjusted by the thermodynamic model indicate that the hydrolysis is decisive in the overall hydroesterification reaction rate and the esterification reaction is endothermic (ΔH = 38.98 kJ/mol). Formation of enzymatic complexes is favored by increasing the temperature, especially the enzyme-methanol inhibition complex. Statistical analysis showed that the model was not overparameterized, and the small confidence interval indicated good reliability of the estimated parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2022.127335 | DOI Listing |
ChemSusChem
December 2024
National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China.
The cleavage and functionalization of carbon-carbon bonds are crucial for the reconstruction and upgrading of organic matrices, particularly in the valorization of biomass, plastics, and fossil resources. However, the inherent kinetic inertness and thermodynamic stability of C-C σ bonds make this process challenging. Herein, we fabricated a glucose-derived defect-rich hierarchical porous carbon as a heterogeneous catalyst for the oxidative cleavage and esterification of C(CO)-C bonds.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Materials Science, Fudan University, Shanghai 200433, China.
Borohydrides, known for ultrahigh hydrogen density, are promising hydrogen storage materials but typically require high operating temperatures due to their strong thermodynamic stability. Here we introduce a novel light-induced destabilization mechanism for hydrogen storage reaction of borohydrides under ambient conditions photogenerated vacancies in LiH. These vacancies thermodynamically destabilize B-H bonds through the spontaneous "strong adsorption" of BH groups, which trigger an asymmetric redistribution of electrons, enabling hydrogen release at near room temperature, approximately 300 °C lower than the corresponding thermal process.
View Article and Find Full Text PDFHeliyon
January 2025
Alanya Alaaddin Keykubat University, Rafet Kayis Engineering Faculty, Department of Engineering Basic Science, 07450, Alanya, Antalya, Turkiye.
Removal of Rhodamine B (RhB) from aqueous solutions was performed by the batch adsorption process. Colemanite was characterized as an adsorbent by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF). The effects of contact time, the effect of the initial concentration of the dye, the amount of adsorbent and temperature parameters on the removal of RhB were investigated.
View Article and Find Full Text PDFBMC Chem
January 2025
Nuclear Chemistry Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, P.O. 13759, Cairo, Egypt.
In this work, selenium (IV) ions were adsorbed from aqueous solutions by the strongly basic anion exchange resin Amberlite IRA-400. The morphology of the resin before and after Se(IV) sorption was investigated using different techniques such as energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). To determine the ideal sorption conditions, a batch approach was used to examine the variables affecting Se(IV) sorption performance, including pH, shaking time, adsorbent dosage, initial metal ion concentration, and temperature.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai 600036, India. Electronic address:
This study involves the thermal characterization of Ca-Est, an esterase from Clostridium acetobutylicum which has been previously found to exhibit maximum specific activity at 60 °C. In the present study, Ca-Est showed maximum stability at 30 °C with almost 75 % of its initial activity being retained after incubation for 5 h and the stability decreased with increasing temperature. Analysis of the thermodynamic parameters revealed that the deactivation of Ca-Est is endothermic and enthalpically favored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!