A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Endoscopic Anatomy of Transcallosal Hemispherotomy: Laboratory Study with Advanced Three-Dimensional Modeling. | LitMetric

Background: Epilepsy surgery has an important role in the treatment of patients with medically intractable seizures. Various authors have proposed an endoscopic technique to perform disconnective procedures. A detailed description of intracerebral anatomy seen through an endoscopic transcallosal corridor has not been reported. The aim of this study was to present a cadaveric step-by-step anatomical demonstration of endoscopic transcallosal hemispherotomy using a dedicated three-dimensional model.

Methods: Anatomical dissections were performed on 6 cadaveric heads (12 hemispheres), and the disconnective procedure was performed using an endoscopic transcallosal approach. A dedicated three-dimensional model was used to better illustrate each step. A simulation of the disconnective procedure was performed by recreating the surgical steps on a subject from the Human Connectome Project dataset, and a calculation of the fiber tracts intersected was performed.

Results: Analyzing data extracted from the three-dimensional model and tractography simulation, 100% of the fibers (streamlines) of corpus callosum, corticopontine tracts, corticospinal tract, and inferior fronto-occipital fascicle were transected. Moreover, a satisfactory number of fibers (>95%) of the thalamocortical tracts, corticostriatal tracts, corona radiata, fornix, and uncinate fascicle were disconnected.

Conclusions: This anatomical study described the relevant neurovascular structures to enable prediction of feasibility and control of the surgical procedure using the endoscopic transcallosal approach. The quantitative analysis permitted estimation of the theoretical efficacy of the procedure, confirming its relevant role in disconnective surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2022.05.042DOI Listing

Publication Analysis

Top Keywords

endoscopic transcallosal
12
dedicated three-dimensional
8
disconnective procedure
8
procedure performed
8
transcallosal approach
8
three-dimensional model
8
endoscopic
6
endoscopic anatomy
4
transcallosal
4
anatomy transcallosal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!