Ethnopharmacological Relevance: The genus Glycyrrhiza is a small perennial herb that has been traditionally used to treat many diseases across the world. Licorice (Gancao in Chinese) is the dried root and rhizome of G. glabra, G. uralensis or G. inflata. Licorice plays an important role in traditional Chinese medicine (TCM), and is the most frequently used in Chinese herbal formulas. Isoliquiritigenin (ISL) is a flavonoid extracted from licorice, and has been evaluated for its various biological activities, including anti-inflammatory, anti-tumor and anti-oxidant activities. Excessive and persistent inflammation in the Mycobacterium tuberculosis (Mtb) infection is not conducive to the elimination of Mtb, but contributes to serious pulmonary dysfunction.
Aim Of The Study: This study aimed to examine the anti-inflammatory effects of ISL in the Mtb infection.
Methods: In vitro models of Mtb-infected macrophages were established. Murine macrophage Raw 264.7 cells and primary peritoneal macrophages were used in this study. Cell viability was determined by the cell counting kit-8 (CCK-8) assay. The effects of ISL on the secretion levels of interleukin -1β (IL-1β), tumor necrosis factor -α (TNF-α), and interleukin -6 (IL-6) were detected by the enzyme-linked immunosorbent assay (ELISA). The expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) were measured by the real time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot. Western blot was used to assess the effects of ISL on the activation of NLRP3 inflammasome and Notch1/NF-κB and MAPK signaling pathways. Immunofluorescence assays was used to detected the translocation of phosphorylation of p65 subunit of NF-κB.
Results: It was revealed that ISL inhibited the secretion of IL-1β and the activation of pore-forming protein (gasdermin D, GSDMD) by suppressing the activation of NLPR3 inflammasome induced by Mtb infection. ISL was also shown to have promising inhibitory effects on inflammatory factors, such as TNF-α, IL-6, iNOS and COX2. Regarding the anti-inflammatory mechanism of ISL, it was found that ISL exerted its anti-inflammatory effects by inhibiting the activation of Notch1/NF-κB and MAPK signaling pathways.
Conclusion: ISL reduced Mtb-induced inflammation through the Notch1/NF-κB and MAPK signaling pathways. ISL might be used as a potential adjuvant drug to treat tuberculosis by adjusting host immune responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2022.115368 | DOI Listing |
Int J Mol Sci
December 2024
Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea.
Ovarian cancer (OC) is the second most common female reproductive cancer and the most lethal gynecological malignancy worldwide. Most human OCs are characterized by high rates of drug resistance and metastasis, leading to poor prognosis. Improving the outcomes of patients with relapsed and treatment-resistant OC remains a challenge.
View Article and Find Full Text PDFMol Biol Rep
November 2024
Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, 44124, Italy.
Background: Macrophages are major effectors in regulating immune response and inflammation. The pro-inflammatory phenotype (M1) is induced by the activation of the Toll-like receptor 4 (TLR4) on the macrophage surface, which recognizes lipopolysaccharide (LPS), a component of Gram-negative bacterial wall, and by the binding of interferon-gamma (IFNγ), a cytokine released by activated T lymphocytes, to its receptor (IFNGR). Among the pathways activated by LPS/IFNγ is the Notch pathway, which promotes the M1 phenotype.
View Article and Find Full Text PDFBiol Res
October 2024
Biochemistry and Molecular Biology Branch, Department of Inorganic, Organic Chemistry and Biochemistry, Medical School/IB-UCLM/Biomedicine Unit, University of Castilla-La Mancha/CSIC, Albacete, Spain.
Background: C3H10T1/2 is a mesenchymal cell line capable of differentiating into osteoblasts, adipocytes and chondrocytes. The differentiation of these cells into osteoblasts is modulated by various transcription factors, such as RUNX2. Additionally, several interconnected signaling pathways, including the NOTCH pathway, play a crucial role in modulating their differentiation into mature bone cells.
View Article and Find Full Text PDFBMC Med Genomics
August 2024
Hepato-Pancreatico-Biliary Surgery Department and liver Transplantation, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
J Transl Med
August 2024
Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, 510060, P. R. China.
Background: LARC patients commonly receive adjuvant therapy, however, hidden micrometastases still limit the improvement of OS. This study aims to investigate the impact of VASN in rectal cancer with pulmonary metastasis and understand the underlying molecular mechanisms to guide adjuvant chemotherapy selection.
Methods: Sequencing data from rectal cancer patients with pulmonary metastasis from Sun Yat-sen University Cancer Center (SYSUCC) and publicly available data were meticulously analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!