Accumulation of nutrients and potentially toxic elements in plants and fishes in restored mangrove ecosystems in South China.

Sci Total Environ

Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China.

Published: September 2022

Mangroves are highly dynamic ecosystems that offer important services such as maintaining biodiversity, filtering pollutants, and providing habitats for fishes. We investigated the uptake and accumulation of nutrients and potentially toxic elements in mangrove plants and fish to better understand the role of mangrove restoration in maintaining mangrove biota quality. In mangrove plants, the average bioconcentration factors of nutrients and potentially toxic elements were in the order P > Pb > Mn > Mg > Se > Zn > Hg > Cu > Cd > As > Co > Cr > Ni > Fe > V > Sb, where only P (all plant species) and Pb (Sonneratia apetala Buchanan-Hamilton) had a BCF > 1.0 in mangrove plants. In general, Sonneratia spp. had better performances than Kandelia candel (Linn.) Druce, Aegiceras corniculatum (Linn.) Blanco and Acanthus ilicifolius L. Sp. in terms of nutrient uptake and toxic metal(loid)s accumulation, and the best uptake capacity was found in S. apetala. Fast growth and easy adaptation make S. apetala suitable for a restored mangrove ecosystem, but continual management is needed to prevent its suppression of mangrove species diversity. The concentration of As, Cd, Hg, Cu, Cr and Pb in the mangrove sediment were 30-220% higher than the Chinese National Standard of Marine Sediment Quality Class I limits, suggesting that the sediments were unsuitable for aquaculture and nature reserves. Although a higher toxic metal(loid)s concentration in the sediment was found, the target hazard quotient (THQ) of this toxic metal(loid)s in 5 mangrove habitat fishes was <1.0, except THQ of Pb in Boleophthalmus pectinirostris Linnaeus was 1.17, and THQ of Cr in Bostrychus sinensis Lacépède was 1.12. The low THQ (less than 1.0) of mangrove habitat fishes suggested that the restored mangrove system could alleviate the bioaccumulation of toxic metal(loid)s in mangrove fish.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.155964DOI Listing

Publication Analysis

Top Keywords

nutrients toxic
12
toxic elements
12
mangrove plants
12
toxic metalloids
12
mangrove
10
accumulation nutrients
8
restored mangrove
8
toxic
6
plants
4
elements plants
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!