Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microbial fuel cells (MFC) are emerging as new generation eco-friendly technology for the superiorities of energy harvest and simultaneous wastewater treatment. However, the power generation performance was strongly restricted by the material/biofilm electron transfer rate. In this research, the fungus-sourced electrode with filament-array structure was firstly proposed and prepared by one-step carbonization method. After 2 h pyrolysis, the functional groups containing N and O elements highly remained in the as-prepared material, which was beneficial to the electron transfer for the current generation. The lowest electron transfer resistance was obtained at 2.2 Ω, which showed a great reduction that compared with graphite sheet anode. With filament-array structure, the lowest mass diffusion resistance was obtained at 26.9 Ω for anodic oxidation reaction, which also supported the highest current generation performance. In addition, the relative abundance of typical electrochemical bacterium Geobacter was highly improved to 45.5% with an extraordinary electroactive biofilm loading of about 1203 ± 256 μg cm. More importantly, the high biocatalytic activity biofilm supported a remarkably observed bio-capacitance of about 1.14 F in 3DF anode, which exhibited the highest power density in 3.5 ± 0.2 W m. In addition, the fungus-sourced material was one kind of economical and readily available material. Overall, this work provided one efficient strategy for electrode preparation and higher power generation in MFCs, which would reduce the capital cost and improve the efficiency in further applications of MFCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.155926 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!