A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fungus-sourced filament-array anode facilitates Geobacter enrichment and promotes anodic bio-capacitance improvement for efficient power generation in microbial fuel cells. | LitMetric

Fungus-sourced filament-array anode facilitates Geobacter enrichment and promotes anodic bio-capacitance improvement for efficient power generation in microbial fuel cells.

Sci Total Environ

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China. Electronic address:

Published: September 2022

Microbial fuel cells (MFC) are emerging as new generation eco-friendly technology for the superiorities of energy harvest and simultaneous wastewater treatment. However, the power generation performance was strongly restricted by the material/biofilm electron transfer rate. In this research, the fungus-sourced electrode with filament-array structure was firstly proposed and prepared by one-step carbonization method. After 2 h pyrolysis, the functional groups containing N and O elements highly remained in the as-prepared material, which was beneficial to the electron transfer for the current generation. The lowest electron transfer resistance was obtained at 2.2 Ω, which showed a great reduction that compared with graphite sheet anode. With filament-array structure, the lowest mass diffusion resistance was obtained at 26.9 Ω for anodic oxidation reaction, which also supported the highest current generation performance. In addition, the relative abundance of typical electrochemical bacterium Geobacter was highly improved to 45.5% with an extraordinary electroactive biofilm loading of about 1203 ± 256 μg cm. More importantly, the high biocatalytic activity biofilm supported a remarkably observed bio-capacitance of about 1.14 F in 3DF anode, which exhibited the highest power density in 3.5 ± 0.2 W m. In addition, the fungus-sourced material was one kind of economical and readily available material. Overall, this work provided one efficient strategy for electrode preparation and higher power generation in MFCs, which would reduce the capital cost and improve the efficiency in further applications of MFCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.155926DOI Listing

Publication Analysis

Top Keywords

power generation
12
electron transfer
12
microbial fuel
8
fuel cells
8
generation performance
8
filament-array structure
8
current generation
8
generation
6
fungus-sourced filament-array
4
filament-array anode
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!