Forest succession is an important process regulating the carbon and nitrogen budgets in forest ecosystems. However, little is known about how and extent by which vegetation succession predictably affects soil CO, CH, and NO fluxes, especially in boreal forest. Here, a field study was conducted along a secondary forest succession trajectory from Betula platyphylla forest (early stage), then Betula platyphylla-Larix gmelinii forest (intermediate stage), to Larix gmelinii forest (late stage) to explore the effects of forest succession on soil greenhouse gas fluxes and related soil environmental factors in Northeast China. The results showed significant differences in soil greenhouse gas fluxes during the forest succession. During the study period, the average soil CO flux was greatest at mid-successional stage (444.72 mg m h), followed by the late (341.81 mg m h) and the early-successional (347.12 mg m h) stages. The average soil CH flux increased significantly during succession, ranging from -0.062 to -0.036 mg m h. The average soil NO flux was measured as 17.95 μg m h at intermediate successional stage, significantly lower than that at late (20.71 μg m h) and early-successional (20.85 μg m h) stages. During forest succession, soil greenhouse gas fluxes showed significant correlations with soil and environmental factors at both seasonal and successional time scales. The seasonal variations of soil GHG fluxes were mainly influenced by soil temperature and water content. Meanwhile, soil MBN and soil NO-N content were also important factors for soil NO fluxes. Structural equation modelling showed that forest succession affected soil CO fluxes by changing soil temperature and microbial biomass carbon, affected soil CH fluxes mainly by changing soil water content and soil pH value, and affected soil NO fluxes mainly by changing soil temperature, microbial biomass nitrogen, and soil NO-N content. Our study suggests that forest succession mainly alters soil nutrient and soil environment/chemical properties affecting soil CO and NO fluxes and soil CH fluxes, respectively, in the secondary forest succession process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.155983DOI Listing

Publication Analysis

Top Keywords

soil fluxes
32
forest succession
32
soil
26
forest
14
fluxes
12
secondary forest
12
succession soil
12
soil greenhouse
12
greenhouse gas
12
gas fluxes
12

Similar Publications

[Effect of enhanced silicate minerals weathering on carbon sequestration by plant-soil systems in rice fields].

Ying Yong Sheng Tai Xue Bao

October 2024

CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.

Successive crop harvest results in soil silicon (Si) loss, which constantly reduces soil available Si. Agricultural measures that can increase the availability of soil Si are in urgent need in agroecosystems. Enhanced weathering of silicate minerals can effectively replenish soil Si, which will promote plant uptake of Si, formation of plant phytolith occluded carbon (PhytOC), and the sequestration of atmospheric CO.

View Article and Find Full Text PDF

The study of terrestrial phosphorus inflow (hereafter referred to as phosphorus inflow) fluxes is essential for controlling non-point source (NPS) pollution. The SWAT model was successfully used to simulate phosphorus inflow fluxes in the Dongting Lake area, while a hybrid model (LSTM and SWAT) was developed and validated for predicting the reduction in phosphorus inflow fluxes among rivers based on three typical reduction scenarios: agricultural control, livestock and poultry reduction, and soil and water conservation measures. The results showed that the inflow flux of TP was 3.

View Article and Find Full Text PDF

To clarify the characteristics of greenhouse gas emissions (CO, CH, and NO) and the comprehensive greenhouse effect from vegetable fields with different organic planting years, the differences in greenhouse gas emission flux, emission intensity (GHGI), and warming potential (GWP) and their influencing factors among vegetable fields with different organic planting years in Songhuaba, including 10 years, 6 years, 3 years, and conventional planting, were analyzed. The results showed that the CO emissions from organic planting treatments were higher than those from conventional planting, whereas the NO and CH emissions were the opposite. Compared to those from conventional planting, the CO emission fluxes and cumulative emissions from organic cultivation for 10, 6, and 3 years increased by 121.

View Article and Find Full Text PDF

Worldwide comparison of carbon stocks and fluxes between native and non-native forests.

Biol Rev Camb Philos Soc

December 2024

Departamento de Ciencias de la Vida, Universidad de Alcalá, Facultad de Ciencias, Área de Ecología, Ctra. Madrid-Barcelona, km.33, 600, 28805, Alcalá de Henares, Madrid, Spain.

Climate change is one of the main challenges that human societies are currently facing. Given that forests represent major natural carbon sinks in terrestrial ecosystems, administrations worldwide are launching broad-scale programs to promote forests, including stands of non-native trees. Yet, non-native trees may have profound impacts on the functions and services of forest ecosystems, including the carbon cycle, as they may differ widely from native trees in structural and functional characteristics.

View Article and Find Full Text PDF

Tropical peatlands significantly influence local and global carbon and nitrogen cycles, yet they face growing pressure from anthropogenic activities. Land use changes, such as peatland forests conversion to oil palm plantations, affect the soil microbiome and greenhouse gas (GHG) emissions. However, the temporal dynamics of microbial community changes and their role as GHG indicators are not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!