Phonon hydrodynamics in crystalline materials.

J Phys Condens Matter

University of Bordeaux, I2M Laboratory, UMR CNRS 5295, 351 Cours de la libération, F-33400 Talence, France.

Published: June 2022

Phonon hydrodynamics is an exotic phonon transport phenomenon that challenges the conventional understanding of diffusive phonon scattering in crystalline solids. It features a peculiar collective motion of phonons with various unconventional properties resembling fluid hydrodynamics, facilitating non Fourier heat transport. Hence, it opens up several new avenues to enrich the knowledge and implementations on phonon physics, phonon engineering, and micro and nanoelectronic device technologies. This review aims at covering a comprehensive development as well as the recent advancements in this field via experiments, analytical methods, and state-of-the-art numerical techniques. The evolution of the topic has been realized using both phenomenological and material science perspectives. Further, the discussions related to the factors that influence such peculiar motion, illustrate the capability of phonon hydrodynamics to be implemented in various applications. A plethora of new ideas can emerge from the topic considering both the physics and the material science axes, navigating toward a promising outlook in the research areas around phonon transport in non-metallic solids.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ac718aDOI Listing

Publication Analysis

Top Keywords

phonon hydrodynamics
12
phonon
8
phonon transport
8
material science
8
hydrodynamics crystalline
4
crystalline materials
4
materials phonon
4
hydrodynamics exotic
4
exotic phonon
4
transport phenomenon
4

Similar Publications

investigations on hydrodynamic phonon transport: From diffusion to convection.

Int J Heat Mass Transf

March 2024

Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, United States of America.

In classical theory, heat conduction in solids is regarded as a diffusion process driven by a temperature gradient, whereas fluid transport is understood as convection process involving the bulk motion of the liquid or gas. In the framework of theory, which is directly built upon quantum mechanics without relying on measured parameters or phenomenological models, we observed and investigated the fluid-like convective transport of energy carriers in solid heat conduction. Thermal transport, carried by phonons, is simulated in graphite by solving the Boltzmann transport equation using a Monte Carlo algorithm.

View Article and Find Full Text PDF

We investigate resonant third-harmonic generation in near-zero index thin films driven out-of-equilibrium by intense optical excitation. Adopting the Landau weak coupling formalism to incorporate electron-electron and electron-phonon scattering processes, we derive a novel set of hydrodynamic equations accounting for collision-driven nonlinear dynamics in sodium. By perturbatively solving hydrodynamic equations, we model third-harmonic generation by a thin sodium film, finding that such a nonlinear process is resonant at the near-zero index resonance of the third-harmonic signal.

View Article and Find Full Text PDF

Coulomb drag between adjacent electron and hole gases has attracted considerable attention, being studied in various two-dimensional systems, including semiconductor and graphene heterostructures. Here we report measurements of electron-hole drag in the Planckian plasma that develops in monolayer graphene in the vicinity of its Dirac point above liquid-nitrogen temperatures. The frequent electron-hole scattering forces minority carriers to move against the applied electric field due to the drag induced by majority carriers.

View Article and Find Full Text PDF
Article Synopsis
  • The Tesla valve aids in controlling fluid flow in tiny systems, inspiring designs for modern electronic and thermal devices using fluid-like principles.
  • Unlike fluid systems, thermal rectification of phonons (energy carriers in solids) is more complex due to fewer interactions and less liquid-like behavior.
  • Recent studies on phonon behavior in graphite led to a micrometer-scale Tesla valve, achieving a 15.2% difference in heat conduction at low temperatures, pushing forward thermal management in small electronic devices.
View Article and Find Full Text PDF

Viscous terahertz photoconductivity of hydrodynamic electrons in graphene.

Nat Nanotechnol

October 2024

Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.

Light incident upon materials can induce changes in their electrical conductivity, a phenomenon referred to as photoresistance. In semiconductors, the photoresistance is negative, as light-induced promotion of electrons across the bandgap enhances the number of charge carriers participating in transport. In superconductors and normal metals, the photoresistance is positive because of the destruction of the superconducting state and enhanced momentum-relaxing scattering, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!