Biotechnological use of the ubiquitous fungus Penicillium sp. 8L2: Biosorption of Ag(I) and synthesis of silver nanoparticles.

J Environ Manage

Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain; Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain.

Published: August 2022

In this work, the efficiency of the ubiquitous fungus Penicillium sp. 8L2 to remove Ag(I) ions from synthetic solutions and its potential to synthesize silver nanoparticles (AgNPs) was evaluated. Using a Rotatable Central Composite Design pH and biomass concentration were optimized. Maximum biosorption capacity 51.53 mg/g, by Langmuir model, comparing favourably with other reports. The fungal biomass was characterized by Fourier Transform Infrared Spectroscopy (FT-IR) and analyzed before and after the biosorption process by different techniques: X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Ultra-High Resolution Transmission Electron Microscopy and Energy Dispersive X-ray (HR-TEM-EDX) and Ultraviolet-Visible Spectrophotometry (UV-vis). The results showed that the fungus applied several mechanisms to remove Ag(I) ions from the solution and that some of them induced the synthesis of AgNPs. This fact could be verified in the synthesis tests from the cell extract in which aqueous suspensions with high concentrations of AgNPs were obtained. These nanoparticles had diameters between 2 and 9 nm and therefore a high potential for their use as biocidal agents. The results indicated that the synthesis of nanoparticles could be an added value to the heavy metal biosorption process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.115281DOI Listing

Publication Analysis

Top Keywords

ubiquitous fungus
8
fungus penicillium
8
penicillium 8l2
8
silver nanoparticles
8
remove agi
8
agi ions
8
biosorption process
8
electron microscopy
8
biotechnological ubiquitous
4
biosorption
4

Similar Publications

Biofilms are ubiquitous surface-associated bacterial communities embedded in an extracellular matrix. It is commonly assumed that biofilm cells are glued together by the matrix; however, how the specific biochemistry of matrix components affects the cell-matrix interactions and how these interactions vary during biofilm growth remain unclear. Here, we investigate cell-matrix interactions in Vibrio cholerae, the causative agent of cholera.

View Article and Find Full Text PDF

Unlabelled: Due to the importance of post-translational modification (PTM) in cellular function, viruses have evolved to both take advantage of and be susceptible to such modification. Adenovirus encodes a multifunctional protein called protein VII, which is packaged with the viral genome in the core of virions and disrupts host chromatin during infection. Protein VII has several PTMs whose addition contributes to the subnuclear localization of protein VII.

View Article and Find Full Text PDF

spp. are ubiquitous, and people are frequently exposed to their spores in the environment and hospital settings. Despite frequent inhalation of the spores, infection is infrequent in humans, except in immunosuppressed hosts.

View Article and Find Full Text PDF

Plant-microbe associations are ubiquitous, but parsing contributions of dispersal, host filtering, competition and temperature on microbial community composition is challenging. Floral nectar-inhabiting microbes, which can influence flowering plant health and pollination, offer a tractable system to disentangle community assembly processes. We inoculated a synthetic community of yeasts and bacteria into nectars of 31 plant species while excluding pollinators.

View Article and Find Full Text PDF

Morphological variations and adhesive distribution: a cross-species examination in conidia.

Front Fungal Biol

December 2024

Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States.

is a globally significant genus of plant pathogens known for causing anthracnose across a diverse array of hosts. Notably, is a pathogen affecting maize. Annually, the global economic impact of this pathogen reaches billions of US dollars.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!