Microbial-induced struvite precipitation (MISP) is a new biocementation method for soil improvement and hydraulic permeability reduction. Compared with traditional microbial-induced carbonate precipitation (MICP), MISP can significantly reduce the production of harmful ammonium ions during biochemical reactions and convert ammonium ions into struvite with promising mechanical strength. In this study, a series of experiments were conducted to compare the performance of the MICP and the MISP processes on sandy soils. Results showed that the average content of calcium carbonate in MISP cemented sand columns after 3 times of injection is similar to that in MICP cemented sand columns after 9 times of injection. The hydraulic permeability of MISP cemented sand columns after 3 times of injection is an order of magnitude lower than that of MICP cemented sand columns after 9 times of injection. To further investigate the physicochemical interactions during MISP and MICP processes, a one-dimensional finite element code considering the chemical reactions and the solute transportation was proposed. Results show that most of the MISP were formed in the early 3 h of the 6 h injection cycle, whereas most of the MICP were formed in the last 5 h of the injection cycle. The simulated total mass of the MISP precipitation, 11.3 g, was close to the experimental result of 9.6 g. The spatial distribution of MISP is more uneven as compared to MICP, as a result of the much faster reaction rate of struvite than calcium carbonate. The findings suggested that MISP could partially replace MICP in the applications of leakage mitigation and reinforcement of sandy soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.115280 | DOI Listing |
Sci Rep
January 2025
College of Civil Engineering, Department of Bridge Engineering, Tongji University, Shanghai, 200092, China.
Addressing environmental challenges such as pollution and resource depletion requires innovative industrial and municipal waste management approaches. Cement production, a significant contributor to greenhouse gas emissions, highlights the need for eco-friendly building materials to combat global warming and promote sustainability. This study evaluates the simultaneous use of Sugarcane Bagasse Ash (SCBA) and Stone Dust (SD) as partial replacements by volume for cement and sand, respectively, at varying ratios in eco-strength concrete mixes designed for 28 MPa (ES-28) and 34 MPa (ES-34), emphasizing their economic and environmental benefits.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Architecture and Civil Engineering, TU Dortmund University, 44227 Dortmund, Germany.
Industrial and construction wastes make up about half of all world wastes. In order to reduce their negative impact on the environment, it is possible to use part of them for concrete production. Using experimental-statistical modeling techniques, the combined effect of brick powder, recycling sand, and alkaline activator on fresh and hardened properties of self-compacting concrete for the production of textile-reinforced concrete was investigated.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
I2M (Institut de Mécanique et d'Ingénierie), UMR 5295, CNRS, University of Bordeaux, 33400 Talence, France.
From both economic and environmental points of view, the reuse of dredged sediments in the direct onsite casting of concrete represents a promising method for replacing sand. The aim of this study was to develop a cementitious material that (i) reuses the thin particles of sediments; (ii) has a low density due to the incorporation of air foam in the material; and (iii) achieves a minimum mechanical strength of 0.5 MPa for embankment applications.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Green Technology for Sustainability, Nanhua University, Chiayi 62248, Taiwan.
The construction industry contributes significantly to global carbon emissions, accounting for approximately 27% of total emissions. With the increasing demand for concrete, there is a growing need to explore alternative materials that can reduce environmental impact. This study investigates the potential of using oyster shell powder, a waste material, as a partial replacement for fine aggregates in concrete.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Construction Technology Research Center, Construction Division, Korea Conformity Laboratories, 199, Gasan Digital 1-ro, Geumcheon-gu, Seoul 08503, Republic of Korea.
This study investigates the tensile behavior of carbon-fiber-reinforced polymer (CFRP) and textile-reinforced mortar (TRM) under various design variables to enhance understanding and application in construction structures. TRM reinforced with CFRP grids is highly effective for strengthening existing structures due to its lightweight nature, durability, ease of installation, and corrosion resistance. The research aims to evaluate how design parameters such as the CFRP grid type, mortar matrix strength (influenced by the water-to-cement ratio), specimen length, and grid width affect TRM's mechanical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!