Although oxygen added to nonaqueous lithium-mediated electrochemical ammonia synthesis (LiMEAS) enhances Faradaic efficiency, its effect on chemical stability and byproducts requires understanding. Therefore, standardized high-resolution gas chromatography-mass spectrometry and nuclear magnetic resonance were employed. Different volatile degradation products have been qualitatively analyzed and quantified in tetrahydrofuran electrolyte by adding some oxygen to LiMEAS. Electrodeposited lithium and reduction/oxidation of the solvent on the electrodes produced organic byproducts to different extents, depending on the oxygen concentration, and resulted in less decomposition products after LiMEAS with oxygen. The main organic component in solid-electrolyte interphase was polytetrahydrofuran, which disappeared by adding an excess of oxygen (3 mol %) to LiMEAS. The total number of byproducts detected was 14, 9, and 8 with oxygen concentrations of 0, 0.8, and 3 mol %, respectively. The Faradaic efficiency and chemical stability of the LiMEAS have been greatly improved with addition of optimal 0.8 mol % oxygen at 20 bar total pressure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9150109PMC
http://dx.doi.org/10.1021/acs.jpclett.2c00768DOI Listing

Publication Analysis

Top Keywords

chemical stability
12
lithium-mediated electrochemical
8
electrochemical ammonia
8
ammonia synthesis
8
faradaic efficiency
8
efficiency chemical
8
oxygen
7
limeas
5
oxygen-enhanced chemical
4
stability lithium-mediated
4

Similar Publications

How SNARE proteins generate force to fuse membranes.

Biophys J

January 2025

Department of Chemical Engineering, Columbia University, New York, NY 10027. Electronic address:

Membrane fusion is central to fundamental cellular processes such as exocytosis, when an intracellular machinery fuses membrane-enclosed vesicles to the plasma membrane for contents release. The core machinery components are the SNARE proteins. SNARE complexation pulls the membranes together, but the fusion mechanism remains unclear.

View Article and Find Full Text PDF

The composition of the metal-polymer friction pair is carefully considered for interacting with water and hydrogen, ensuring the metals electrode process potential remains below waters in a neutral medium. Simultaneously, adherence to defined chemical composition ratios for the metal-polymer materials is crucial. This analysis is conducted under conditions of thermal stabilization, characterized by a minimal temperature gradient across the rim thickness within an equivalent thermal field.

View Article and Find Full Text PDF

Exogenous dsRNA triggers sequence-specific RNAi and fungal stress responses to control Magnaporthe oryzae in Brachypodium distachyon.

Commun Biol

January 2025

Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.

In vertebrates and plants, dsRNA plays crucial roles as PAMP and as a mediator of RNAi. How higher fungi respond to dsRNA is not known. We demonstrate that Magnaporthe oryzae (Mo), a globally significant crop pathogen, internalizes dsRNA across a broad size range of 21 to about 3000 bp.

View Article and Find Full Text PDF

Mechanical ventilation is the process through which breathing support is provided to patients who face inconvenience during respiration. During the pandemic, many people were suffering from lung disorders, which elevated the demand for mechanical ventilators. The handling of mechanical ventilators is to be done under the assistance of trained professionals and demands the selection of ideal parameters.

View Article and Find Full Text PDF

High-temperature structural disorders stabilize hydrous aluminosilicates in the mantle transition zone.

Nat Commun

January 2025

Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.

Hydrous aluminosilicates are important deep water-carriers in sediments subducting into the deep mantle. To date, it remains enigmatic how hydrous aluminosilicates withstand extremely high temperatures in the mantle transition zone. Here we systematically investigate the crystal structures and chemical compositions of typical hydrous aluminosilicates using single-crystal X-ray diffraction, electron probe microanalyzer, and nanoscale secondary ion mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!