Accessory genes are variably present among members of a species and are a reservoir of adaptive functions. In bacteria, differences in gene distributions among individuals largely result from mobile elements that acquire and disperse accessory genes as cargo. In contrast, the impact of cargo-carrying elements on eukaryotic evolution remains largely unknown. Here, we show that variation in genome content within multiple fungal species is facilitated by Starships, a newly discovered group of massive mobile elements that are 110 kb long on average, share conserved components, and carry diverse arrays of accessory genes. We identified hundreds of Starship-like regions across every major class of filamentous Ascomycetes, including 28 distinct Starships that range from 27 to 393 kb and last shared a common ancestor ca. 400 Ma. Using new long-read assemblies of the plant pathogen Macrophomina phaseolina, we characterize four additional Starships whose activities contribute to standing variation in genome structure and content. One of these elements, Voyager, inserts into 5S rDNA and contains a candidate virulence factor whose increasing copy number has contrasting associations with pathogenic and saprophytic growth, suggesting Voyager's activity underlies an ecological trade-off. We propose that Starships are eukaryotic analogs of bacterial integrative and conjugative elements based on parallels between their conserved components and may therefore represent the first dedicated agents of active gene transfer in eukaryotes. Our results suggest that Starships have shaped the content and structure of fungal genomes for millions of years and reveal a new concerted route for evolution throughout an entire eukaryotic phylum.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156397PMC
http://dx.doi.org/10.1093/molbev/msac109DOI Listing

Publication Analysis

Top Keywords

accessory genes
16
fungal genomes
8
mobile elements
8
variation genome
8
conserved components
8
elements
6
starships
5
giant starship
4
starship elements
4
elements mobilize
4

Similar Publications

Closed genomes of commercial inoculant rhizobia provide a blueprint for management of legume inoculation.

Appl Environ Microbiol

January 2025

Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.

Unlabelled: Rhizobia are soil bacteria capable of establishing symbiosis within legume root nodules, where they reduce atmospheric N into ammonia and supply it to the plant for growth. Australian soils often lack rhizobia compatible with introduced agricultural legumes, so inoculation with exotic strains has become a common practice for over 50 years. While extensive research has assessed the N-fixing capabilities of these inoculants, their genomics, taxonomy, and core and accessory gene phylogeny are poorly characterized.

View Article and Find Full Text PDF

Introduction: This is a report of a child with congenital hyperinsulinism associated with a loss-of-function variant in KCNE1. KCNE1 encodes a human potassium channel accessory (beta) subunit that modulates potassium channel Kv7.1 (encoded by KCNQ1).

View Article and Find Full Text PDF

Linear Plasmids in Micrococcus: Insights Into a Common Ancestor and Transfer by Conjugation.

Environ Microbiol

January 2025

Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán, Argentina.

Actinobacteria have frequently been reported in the Andean Puna, including strains of the genus Micrococcus. These strains demonstrate resistance to high levels of UV radiation, arsenic, and multiple antibiotics, and possess large linear plasmids. A comparative analysis of the sequences and putative functions of these plasmids was conducted.

View Article and Find Full Text PDF

(Cyanobacteria) chemical fingerprint reveals local molecular adaptation.

Microbiol Spectr

January 2025

UMR7245 MCAM MNHN-CNRS, Muséum National d'Histoire Naturelle, Paris, France.

Unlabelled: can colonize a wide variety of environments (e.g., freshwater, brackish, alkaline, or alkaline-saline water) and develop dominant and even permanent blooms that overshadow and limit the diversity of adjacent phototrophs, especially in alkaline and saline environments.

View Article and Find Full Text PDF

Isolation and Characterization of a Lytic Phage PaTJ Against .

Viruses

November 2024

Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China.

is a major global threat to human health, and phage therapy has emerged as a promising strategy for treating infections caused by multidrug-resistant pathogens. In this study, we isolated and characterized a lytic phage, PaTJ, from wastewater. PaTJ belongs to the phage family , and is featured by short latency (30 min) and large burst size (10 PFU per infected cell).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!