Green stormwater infrastructure provides environmental, economic, and health benefits as a strategy for building resilience against climate change impacts. However, it may inadvertently increase vulnerability due to improper design and construction or lack of maintenance. We engaged city stakeholders and a diverse student group to investigate possible maladaptation. After rain events, student interns collected data at green stormwater infrastructure, identified in partnership with city stakeholders, for both water retention and mosquito larvae, if present. During the sampling period in 2018, 24 rain events occurred, with 28 sites visited 212 times including visits to basins (63%), curb cuts (34%), and a bioswale (2%). The largest basin consistently retained water (mean: 3.3 days, SD: 2.3 days) and was a positive site for Culex quinquefasciatus, a West Nile virus vector. We found that while basins can become mosquito breeding habitat, there was no evidence that curb cuts were collecting and retaining water long enough. As cities turn to green stormwater infrastructure to address climate change impacts of increasing drought, flooding, and extreme heat, these findings can help in the selection of appropriate infrastructure design typologies.

Download full-text PDF

Source
http://dx.doi.org/10.2987/21-7055DOI Listing

Publication Analysis

Top Keywords

green stormwater
16
stormwater infrastructure
16
climate change
8
change impacts
8
city stakeholders
8
rain events
8
curb cuts
8
infrastructure
5
greening mosquitoes
4
mosquitoes comparison
4

Similar Publications

Global climate change and rapid urbanization have increasingly intensified extreme rainfall events and surface runoff, posing significant challenges to urban hydrological security. Synergetic Grey-Green Infrastructure (SGGI) has been widely applied to enhance stormwater management in urban areas. However, current research primarily focused on optimizing and evaluating either grey infrastructure (GREI) or green infrastructure (GI) under single rainfall event, neglecting the non-stationary impacts of long-term climate change on infrastructure performance.

View Article and Find Full Text PDF

Quantifying the Impact of Soil Moisture Sensor Measurements in Determining Green Stormwater Infrastructure Performance.

Sensors (Basel)

December 2024

Department of Civil and Environmental Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.

The ability to track moisture content using soil moisture sensors in green stormwater infrastructure (GSI) systems allows us to understand the system's water management capacity and recovery. Soil moisture sensors have been used to quantify infiltration and evapotranspiration in GSI practices both preceding, during, and following storm events. Although useful, soil-specific calibration is often needed for soil moisture sensors, as small measurement variations can result in misinterpretation of the water budget and associated GSI performance.

View Article and Find Full Text PDF

In this research, a sustainable blue-green infrastructure (BGI) was developed to efficiently remove contaminants from stormwater through a combined use of modified porous asphalt (PA) and microalgae cultivation to provide a potential drinking water (DW) source. According to the results, the modified PA with powder activated carbon (PAC) could successfully reduce the level of total suspended solids (TSS), turbidity, polycyclic aromatic hydrocarbons (PAHs), oil and grease to below the DW standards but failed to efficiently remove some heavy metals (HMs) and nutrient pollutants. The results revealed that the treated stormwater was an appropriate medium for microalgae cultivation.

View Article and Find Full Text PDF

The accumulation process of pollutants in deposited particles of different sizes on different roads in Beijing, China.

Environ Geochem Health

December 2024

Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.

Road-Deposited Sediments (RDS) samples were collected from four different roads in Beijing, and the distribution of pollutants in RDS with various particle sizes was compared. In this study, the cumulative mass of RDS exhibited a positive correlation with the number of dry days, and the RDS load below 75 μm was also influenced by road traffic volume. As traffic volume escalated, there was a corresponding increase in the load of these smaller RDS.

View Article and Find Full Text PDF

Fate of wastewater trace organic chemicals in vegetated biofiltration systems.

Water Res

December 2024

Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales (UNSW), High St, Kensington, NSW, 2052, Australia; Institute for Artificial Intelligence Research and Development of Serbia, 21000 Novi Sad, Serbia.

Vegetated biofiltration system (VBS) is an effective green technology for urban stormwater and greywater treatment. However, VBS is yet to be optimised for effective treatment of wastewater, particularly if it contains trace organic chemicals (TrOCs). The effect of plant species has not been addressed under TrOC wastewater loading.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!