A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Concept development of an on-chip PET system. | LitMetric

Background: Organs-on-Chips (OOCs), microdevices mimicking in vivo organs, find growing applications in disease modeling and drug discovery. With the increasing number of uses comes a strong demand for imaging capabilities of OOCs as monitoring physiologic processes within OOCs is vital for the continuous improvement of this technology. Positron Emission Tomography (PET) would be ideal for OOC imaging, however, current PET systems are insufficient for this task due to their inadequate spatial resolution. In this work, we propose the concept of an On-Chip PET system capable of imaging OOCs and optimize its design using a Monte Carlo Simulation (MCS).

Material And Methods: The proposed system consists of four detectors arranged around the OOC device. Each detector is made of two monolithic LYSO crystals and covered with Silicon photomultipliers (SiPMs) on multiple surfaces. We use a Convolutional Neural Network (CNN) trained with data from a MCS to predict the first gamma-ray interaction position inside the detector from the light patterns that are recorded by the SiPMs on the detector's surfaces.

Results: The CNN achieves a mean average prediction error of 0.80 mm in the best configuration. The proposed system achieves a sensitivity of 34.81% for 13 mm thick crystals and does not show a prediction degradation near the boundaries of the detector. We use the trained network to reconstruct an image of a grid of 21 point sources spread across the field-of-view and obtain a mean spatial resolution of 0.55 mm. We show that 25,000 Line of Responses (LORs) are needed to reconstruct a realistic OOC phantom with adequate image quality.

Conclusions: We demonstrate that it is possible to achieve a spatial resolution of almost 0.5 mm in a PET system made of multiple monolithic LYSO crystals by directly predicting the scintillation position from light patterns created with SiPMs. We observe that a thinner crystal performs better than a thicker one, that increasing the SiPM size from 3 mm to 6 mm only slightly decreases the prediction performance, and that certain surfaces encode significantly more information for the scintillation-point prediction than others.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120309PMC
http://dx.doi.org/10.1186/s40658-022-00467-xDOI Listing

Publication Analysis

Top Keywords

pet system
12
spatial resolution
12
on-chip pet
8
proposed system
8
monolithic lyso
8
lyso crystals
8
light patterns
8
pet
5
system
5
concept development
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!