The COVID-19 pandemic has resulted in more than 524 million cases and 6 million deaths worldwide. Various drug interventions targeting multiple stages of COVID-19 pathogenesis can significantly reduce infection-related mortality. The current within-host mathematical modeling study addresses the optimal drug regimen and efficacy of combination therapies in the treatment of COVID-19. The drugs/interventions considered include Arbidol, Remdesivir, Interferon (INF) and Lopinavir/Ritonavir. It is concluded that these drugs, when administered singly or in combination, reduce the number of infected cells and viral load. Four scenarios dealing with the administration of a single drug, two drugs, three drugs and all four are discussed. In all these scenarios, the optimal drug regimen is proposed based on two methods. In the first method, these medical interventions are modeled as control interventions and a corresponding objective function and optimal control problem are formulated. In this framework, the optimal drug regimen is derived. Later, using the comparative effectiveness method, the optimal drug regimen is derived based on the basic reproduction number and viral load. The average number of infected cells and viral load decreased the most when all four drugs were used together. On the other hand, the average number of susceptible cells decreased the most when Arbidol was administered alone. The basic reproduction number and viral load decreased the most when all four interventions were used together, confirming the previously obtained finding of the optimal control problem. The results of this study can help physicians make decisions about the treatment of the life-threatening COVID-19 infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9118007 | PMC |
http://dx.doi.org/10.1007/s10441-022-09440-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!