Purpose: This work attempts to decode the discriminative information in dopamine transporter (DAT) imaging using deep learning for the differential diagnosis of parkinsonism.

Methods: This study involved 1017 subjects who underwent DAT PET imaging ([C]CFT) including 43 healthy subjects and 974 parkinsonian patients with idiopathic Parkinson's disease (IPD), multiple system atrophy (MSA) or progressive supranuclear palsy (PSP). We developed a 3D deep convolutional neural network to learn distinguishable DAT features for the differential diagnosis of parkinsonism. A full-gradient saliency map approach was employed to investigate the functional basis related to the decision mechanism of the network. Furthermore, deep-learning-guided radiomics features and quantitative analysis were compared with their conventional counterparts to further interpret the performance of deep learning.

Results: The proposed network achieved area under the curve of 0.953 (sensitivity 87.7%, specificity 93.2%), 0.948 (sensitivity 93.7%, specificity 97.5%), and 0.900 (sensitivity 81.5%, specificity 93.7%) in the cross-validation, together with sensitivity of 90.7%, 84.1%, 78.6% and specificity of 88.4%, 97.5% 93.3% in the blind test for the differential diagnosis of IPD, MSA and PSP, respectively. The saliency map demonstrated the most contributed areas determining the diagnosis located at parkinsonism-related regions, e.g., putamen, caudate and midbrain. The deep-learning-guided binding ratios showed significant differences among IPD, MSA and PSP groups (P < 0.001), while the conventional putamen and caudate binding ratios had no significant difference between IPD and MSA (P = 0.24 and P = 0.30). Furthermore, compared to conventional radiomics features, there existed average above 78.1% more deep-learning-guided radiomics features that had significant differences among IPD, MSA and PSP.

Conclusion: This study suggested the developed deep neural network can decode in-depth information from DAT and showed potential to assist the differential diagnosis of parkinsonism. The functional regions supporting the diagnosis decision were generally consistent with known parkinsonian pathology but provided more specific guidance for feature selection and quantitative analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206631PMC
http://dx.doi.org/10.1007/s00259-022-05804-xDOI Listing

Publication Analysis

Top Keywords

differential diagnosis
16
dopamine transporter
8
diagnosis parkinsonism
8
deep learning
8
saliency map
8
ipd msa
8
msa psp
8
diagnosis
5
decoding dopamine
4
transporter imaging
4

Similar Publications

Children are highly sensitive to toxins which can damage their organs and lead to death. Investigating the main causes of intoxication could reduce mortality and morbidity in children. In this cross-sectional study, the documents of all poisoned patients (214 cases) admitted to the emergency department of Taleghani children`s Hospital between April 2020 and 2023 were investigated.

View Article and Find Full Text PDF

Decorin-mediated dermal papilla cell-derived exosomes regulate hair follicle growth and development through miR-129-2-3p/SMAD3/TGF-β axis.

Int J Biol Macromol

January 2025

College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China. Electronic address:

Decorin (DCN) is a member of the small leucine-rich proteoglycan family within the extracellular matrix, playing a role in the growth and development of hair follicle (HF). Exosomes serve as significant mediators of intercellular communication and are involved in the cyclic regeneration of HF. Exosomes derived from dermal papilla cells (DPC-Exos) are essential for the cycling and regrowth of HF.

View Article and Find Full Text PDF

Parkin modulates the hepatocellular carcinoma microenvironment by regulating PD-1/PD-L1 signalling.

J Adv Res

January 2025

Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China. Electronic address:

Introduction: Parkin-mediated mitophagy is essential for the clearance of damaged mitochondria, and it inhibits tumour development. The role of mitophagy in modulating tumour immunity is becoming clearer, but the underlying mechanism is still poorly understood.

Objective: This study was designed to examine the role for Parkin in the immune microenvironment of liver tumors induced by carbon tetrachloride (CCl).

View Article and Find Full Text PDF

Plant diseases constantly threaten crops and food systems, while global connectivity further increases the risks of spreading existing and exotic pathogens. Here, we first explore how an integrative approach involving plant pathway knowledgegraphs, differential gene expression data, and biochemical data informing Raman spectroscopy could be used to detect plant pathways responding to pathogen attacks. The Plant Reactome (https://plantreactome.

View Article and Find Full Text PDF

Pemetrexed is a chemotherapeutic, antimetabolite agent that has been used in oncology to treat diseases such as metastatic non-small cell lung cancer and unresectable malignant pleural mesothelioma. Pemetrexed use may result in pseudocellulitis, which presents as poorly demarcated patches or plaques with erythema, edema, warmth, and tenderness. These lesions can present unilaterally or bilaterally on the lower extremities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!