AI Article Synopsis

Article Abstract

It is important to differentiate between benign and malignant myxoid tumors to establish the treatment plan, determine the optimal surgical extent, and plan postoperative surveillance, but differentiation may be complicated by imaging-feature overlap. Texture analysis is used for quantitative assessment of imaging characteristics based on mathematically calculated pixel heterogeneity and has been applied to the discrimination of benign from malignant soft tissue tumors (STTs). In this study, we aimed to assess the diagnostic value of the texture features of conventional magnetic resonance images for the differentiation of benign from malignant myxoid STTs. Magnetic resonance images of 39 patients with histologically confirmed myxoid STTs of the extremities were analyzed. Qualitative features were assessed and compared between the benign and malignant groups. Texture analysis was performed, and texture features were selected based on univariate analysis and Fisher's coefficient. The diagnostic value of the texture features was assessed using receiver operating curve analysis. T1 heterogeneity showed a statistically significant difference between benign and malignant myxoid STTs, with substantial inter-reader reliability. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of T1 heterogeneity were 55.6%, 83.3%, 88.2%, 45.5%, and 64.1%, respectively. Among the texture features, T2w-WavEnLL_s-3 showed good diagnostic performance, and T2w-WavEnLL_s-4 and GeoW4 showed fair diagnostic performance. The logistic regression model including T1 heterogeneity and T2_WavEnLL_s-4 showed good diagnostic performance. However, there was no statistically significant difference between the overall qualitative assessment by a radiologist and the predictor model. Geometry-based and wavelet-derived texture features from T2-weighted images were significantly different between benign and malignant myxoid STTs. However, the texture features had a limited additive value in differentiating benign from malignant myxoid STTs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9119440PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267569PLOS

Publication Analysis

Top Keywords

benign malignant
32
malignant myxoid
24
texture features
24
myxoid stts
20
texture analysis
12
magnetic resonance
12
diagnostic performance
12
texture
9
benign
8
differentiate benign
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!