Coatings for passive radiative cooling applications must be highly reflected in the solar spectrum, and thus can hardly support any coloration without losing their functionality. In this work, a colorful daytime radiative cooling surface based on structural coloration is reported. A designed radiative cooler with a bioinspired array of truncated SiO microcones is manufactured via a self-assembly method and reactive ion etching. Complemented with a silver reflector, the radiative cooler exhibits broadband iridescent coloration due to the scattering induced by the truncated microcone array while maintaining an average reflectance of 95% in the solar spectrum and a high thermal emissivity (ε) of 0.95, owing to the reduced impedance mismatch provided by the patterned surface at infrared wavelengths, reaching an estimated cooling power of ≈143 W m at an ambient temperature of 25 °C and a measured average temperature drop of 7.1 °C under direct sunlight. This strong cooling performance is attributed to its bioinspired surface pattern, which promotes both the aesthetics and cooling capacity of the daytime radiative cooler.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202202400DOI Listing

Publication Analysis

Top Keywords

daytime radiative
12
radiative cooling
12
radiative cooler
12
solar spectrum
8
radiative
6
cooling
6
iridescent daytime
4
cooling absorption
4
absorption peaks
4
peaks visible
4

Similar Publications

Gradient Porous and Carbon Black-Integrated Cellulose Acetate Aerogel for Scalable Radiative Cooling.

Small

January 2025

School of Mechanical Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.

Passive temperature controls like passive daytime radiative cooling (PDRC)-heating (PDRH), and thermal insulation are essential to meet the growing demand for energy-efficient thermal solutions. When combined with advanced functions like electromagnetic interference shielding, these technologies can significantly enhance scalability. However, existing approaches using single thin films or uniform porous materials face inherent limitations in optimizing versatile functions, while lightweight, insulating aerogels can extend their multifunctionality by manipulating pores and fillers.

View Article and Find Full Text PDF

Robust fluorinated cellulose composite aerogels incorporating radiative cooling and thermal insulation for regionally adaptable building thermal management.

Int J Biol Macromol

December 2024

Jiangsu Optoelectronic Functional Materials Engineering Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. Electronic address:

Passive radiative cooling (PRC) is an emerging sustainable technology that plays a key role for achieving the goal of carbon neutrality. However, several challenges remain for PRC materials in their practical application in building thermal management, including overcooling problems and unsatisfactory cooling efficiency caused by solar absorption and parasitic heat gains. In this work, fluorinated cellulose-based composite aerogels (FCCA) integrating thermal insulation and PRC were developed by a facile manufacturing strategy that combined phase separation and freeze-drying.

View Article and Find Full Text PDF

Biomimetic Alumina Film for Passive Daytime Radiative Cooling.

ACS Appl Mater Interfaces

December 2024

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.

Passive daytime radiative cooling is receiving more and more attention as a cooling method that does not consume energy to cool objects. However, most radiative cooling materials require the mixing of multiple particles, which increases the manufacturing process requirements. Most radiative cooling materials are susceptible to outdoor abrasion, pollution, and UV exposure, which leads to decreased performance.

View Article and Find Full Text PDF

Forest fire emission estimates over South Asia using Suomi-NPP VIIRS-based thermal anomalies and emission inventory.

Environ Pollut

December 2024

Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India; DST-Mahamana Centre of Excellence in Climate Change Research, Banaras Hindu University, Varanasi, India. Electronic address:

Emission estimates of carbon-containing greenhouse gases (CO, CH) and aerosols (PM) were made from forest fire across South Asia using Visible Infrared Imaging Radiometer Suite (VIIRS) based thermal anomalies and fire products. VIIRS 375 m I-band active fire product was selectively retrieved for the years 2012-2021 over forest cover across South Asia. Annual incidence of fire events across South Asia was 0.

View Article and Find Full Text PDF

Simultaneous Enhancement of Cooling Performance and Durability of the Polymer Radiative Cooler by a High UV-Reflective Polymer Multilayer Film.

ACS Appl Mater Interfaces

December 2024

Department of Optics and Optical Engineering, School of Physical Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei City 230026, China.

The development of polymer radiative coolers with easy processing, low cost, and high inherent emissivity has significantly promoted the industrialization process of passive daytime radiative cooling. For excellent outdoor durability, however, the traditional strategy of using UV absorbers inevitably weakens the cooling performance of polymer-based coolers. The introduction of a high UV-reflective layer has been proven to be the most effective strategy to eliminate the negative effects of UV absorption and improve the durability of polymer coolers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!