Background: The cotton bollworm, Helicoverpa armigera, is a worldwide polyphagous pest, causing huge economic losses in vegetable, cotton and corn crops, among others. Owing to long-term exposure to Bacillus thuringiensis (Bt) toxins, evolution of resistance has been detected in this pest. As a conservative and effective neurotransmitter, dopamine (DA) has an important role in insect growth and development. In this study, we investigated the regulatory functions of DA and its associated non-coding RNA in metamorphosis in H. armigera.
Results: Expression profiles indicated that DA and DA pathway genes were highly expressed during larval-pupal metamorphosis in H. armigera. RNA interference and pharmacological experiments confirmed that tyrosine hydroxylase (TH), dopa decarboxylase, vesicular amine transporter and DA receptor 2 are critical genes related to the development of H. armigera from larvae to pupae. We also found that miR-14 and miR-2766 targeted the 3' untranslated region to post-transcriptionally regulate HaTH function. Application of miR-2766 and miR-14 antagomirs significantly increased levels of HaTH transcripts and proteins, while injection of miR-2766 and miR-14 agomirs not only suppressed messenger RNA and protein levels of HaTH, but also resulted in defective pupation in H. armigera.
Conclusion: These results suggest that DA deficiency inhibits larval-pupal metamorphosis in H. armigera. Potentially, DA pathway genes and their microRNAs could be used as a novel target for H. armigera management. © 2022 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ps.6997 | DOI Listing |
Insect Biochem Mol Biol
December 2024
Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA. Electronic address:
Pestic Biochem Physiol
December 2024
Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China. Electronic address:
The diamondback moth (Plutella xylostella L.), a notorious pest infesting cruciferous vegetables worldwide, has developed a high level of resistance to various commonly used chemical pesticides. In this paper, we explore whether dopa decarboxylase (DDC), which is essential for survival and development in insects, could be used as a potential target for the control of P.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China.
has developed high levels of resistance to many commonly used insecticides. () is essential for insect survival; thus, we evaluated whether could be a potential target for controlling . In this study, was identified; further qPCR analysis showed that increased its expression during larval pupation and was highly expressed in the head and epidermis of prepupa in .
View Article and Find Full Text PDFOpen Biol
November 2024
CABD (Andalusian Center for Developmental Biology), CSIC/Universidad Pablo de Olavide/Junta de Andalucía, Seville 41013, Spain.
The capacity to regenerate lost organs is widespread among animals, and yet the number of species in which regeneration has been experimentally probed using molecular and functional assays is very small. This is also the case for insects, for which we still lack a complete picture of their regeneration mechanisms and the extent of their conservation. Here, we contribute to filling this gap by investigating regeneration in the mayfly .
View Article and Find Full Text PDFPestic Biochem Physiol
November 2024
College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!