Objectives: Duchenne muscular dystrophy is associated with various degrees of cognitive impairment and behavioral disturbances. Emotional and memory deficits also constitute reliable outcome measures to assess efficacy of treatments in the mdx mouse lacking the muscle and neuronal full-length dystrophins. The present study aimed to evaluate whether these deficits could be alleviated by the restoration of brain dystrophin.

Methods: We performed intracerebroventricular administration of a new potent tricyclo-DNA antisense oligonucleotide (tcDNA-ASO) containing a full phosphodiester backbone conjugated to a palmitic acid moiety (tcDNA-ASO), designed to skip the mutated exon 23 of mdx mice.

Results: We first show that the tcDNA-ASO rescues expression of brain dystrophin to 10-30% of wild-type levels and significantly reduces the abnormal unconditioned fear responses in mdx mice in a dose-dependent manner, 5 weeks post-injection. Exon skipping efficiency, ASO biodistribution, protein restoration and effect on the fear response were optimal with a dose of 400 μg at 6-7 weeks post-injection, with synaptic-like expression in brain tissues such as the hippocampus and amygdala. Furthermore, this dose of tcDNA-ASO restored long-term memory retention of mdx mice in an object recognition task, but only had minor effects on fear conditioning.

Interpretation: These results suggest for the first time that postnatal re-expression of brain dystrophin could reverse or at least alleviate some cognitive deficits associated with Duchenne muscular dystrophy. ANN NEUROL 2022;92:213-229.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9544349PMC
http://dx.doi.org/10.1002/ana.26409DOI Listing

Publication Analysis

Top Keywords

brain dystrophin
12
muscular dystrophy
12
restoration brain
8
exon skipping
8
mdx mouse
8
duchenne muscular
8
expression brain
8
mdx mice
8
brain
5
mdx
5

Similar Publications

Absence of the structural protein, dystrophin, results in the neuromuscular disorder Duchenne Muscular Dystrophy (DMD). In addition to progressive skeletal muscle dysfunction, this multisystemic disorder can also result in cognitive deficits and behavioural changes that are likely to be consequences of dystrophin loss from central neurons and astrocytes. Dystrophin-deficient mdx mice exhibit decreases in grey matter volume in the hippocampus, the brain region that encodes and consolidates memories, and this is exacerbated with ageing.

View Article and Find Full Text PDF

Expanding the Molecular Genetic Landscape of Dystrophinopathies and Associated Phenotypes.

Biomedicines

November 2024

Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany.

: X-linked dystrophinopathies are a group of neuromuscular diseases caused by pathogenic variants in the gene (MIM *300377). Duchenne muscular dystrophy (DMD; MIM #310200) is the most common inherited muscular dystrophy. : We screened datasets of 403 male, genetically confirmed X-linked dystrophinopathy patients and identified 13 pathogenic variants of the gene that have not been described in the literature thus far.

View Article and Find Full Text PDF

Characterization of Dystrophin Dp71 Expression and Interaction Partners in Embryonic Brain Development: Implications for Duchenne/Becker Muscular Dystrophy.

Mol Neurobiol

January 2025

Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-Cho, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan.

Duchenne/Becker muscular dystrophy (DMD/BMD) manifests progressive muscular dystrophy and non-progressive central nervous disorder. The neural disorder is possibly caused by abnormalities in the developmental period; however, basic research to understand the mechanisms remains underdeveloped. The responsible gene, Dmd (dystrophin), generates multiple products derived from several gene promoters.

View Article and Find Full Text PDF

Introduction/aims: While dystrophinopathies are primarily characterized by progressive muscle weakness with onset during childhood, dystrophin also plays a role in brain development. This study aimed to characterize how neurodevelopmental and psychiatric disorders are currently identified and managed in clinical care of those with Becker and Duchenne muscular dystrophy (BDMD).

Methods: Parent Project Muscular Dystrophy (PPMD) disseminated surveys to caregivers and health care providers (HCPs) in the United States to assess the frequency and management of neurodevelopmental and psychiatric disorders of those with dystrophinopathy.

View Article and Find Full Text PDF

The severity of brain comorbidities in Duchenne muscular dystrophy (DMD) depends on the mutation position within the DMD gene and differential loss of distinct brain dystrophin isoforms (i.e. Dp427, Dp140, Dp71).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!