The dynamics of the formation of a specific clathrate hydrate as well as its thermodynamic transitions depend on the interactions between the trapped molecules and the host water lattice. The molecular-level understanding of the different underlying processes benefits not only the description of the properties of the system, but also allows the development of multiple technological applications such as gas storage, gas separation, energy transport, In this work we investigate the stability of periodic crystalline structures, such as He@sI and He@sII clathrate hydrates by first-principles computations. We consider such host water networks interacting with a guest He atom using selected density functional theory approaches, in order to explore the effects on the encapsulation of a light atom in the sI/sII crystals, by deriving all energy components (guest-water, water-water, guest-guest). Structural properties and energies were first computed by structural relaxations of the He-filled and empty sI/sII unit cells, yielding lattice and compressibility parameters comparable to experimental and theoretical values available for those hydrates. According to the results obtained, the He enclathration in the sI/sII unit cells is a stabilizing process, and both He@sI and He@sII clathrates, considering single cage occupancy, are predicted to be stable whatever the XDM or D4 dispersion correction applied. Our results further reveal that despite the weak underlying interactions the He encapsulation has a rather notable effect on both lattice parameters and energetics, with the He@sII being the most energetically favorable in accord with recent experimental observations.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp00701kDOI Listing

Publication Analysis

Top Keywords

clathrate hydrates
8
hydrates first-principles
8
host water
8
he@si he@sii
8
si/sii unit
8
unit cells
8
delving guest-free
4
guest-free he-filled
4
he-filled sii
4
sii clathrate
4

Similar Publications

Growth of Clathrate Hydrates in Nanoscale Ice Films Observed Using Electron Diffraction and Infrared Spectroscopy.

J Phys Chem Lett

January 2025

DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.

Clathrate hydrates (CHs) are believed to exist in cold regions of space, such as comets and icy moons. While spectroscopic studies have explored their formation under similar laboratory conditions, direct structural characterization using diffraction techniques has remained elusive. We present the first electron diffraction study of tetrahydrofuran (THF) and 1,3-dioxolane (DIOX) CHs in the form of nanometer-thin ice films under an ultrahigh vacuum at cryogenic temperatures.

View Article and Find Full Text PDF

Evaluation of rheological properties of guar gum-based fracturing fluids enhanced with hydroxyl group bearing thermodynamic hydrate inhibitors.

Int J Biol Macromol

December 2024

Department of Petroleum Engineering, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India. Electronic address:

Naturally occurring gas clathrates are a significant methane resource-the primary component of natural gas, regarded as the cleanest hydrocarbon and a key feedstock for producing gray and blue hydrogen. Despite the global abundance of gas hydrate reserves, extraction via depressurization has yet to achieve commercially viable production rates. The primary limitation lies in the low permeability of hydrate-bearing sediments, where solid clathrates obstruct porous pathways, hindering dissociation and slowing gas recovery.

View Article and Find Full Text PDF

On the phase behaviors of CH4-CO2 binary clathrate hydrates: Equilibrium with aqueous phase.

J Chem Phys

December 2024

Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan.

We explore the solubilities of guest CH4 and/or CO2 in the aqueous state coexisting with the corresponding hydrate. The equilibrium conditions are estimated by calculating the chemical potentials of water and guest species in the hydrate on the basis of a statistical mechanical theory using pairwise intermolecular potentials. This requires the least computational cost while covering a wide range of temperature, pressure, and composition of guest species, even for the binary hydrate.

View Article and Find Full Text PDF

Electric Field Influence on CO Clathrate Hydrates.

J Phys Chem A

November 2024

Department of Physics, Sikkim University, Samdur, East Sikkim 737102, India.

We consider carbon monoxide (CO) confined in the hydrogen-bonded building blocks of sI and sII clathrate hydrates, viz., (5, 56, 56) cages, within the density functional theory-based calculations. We study their response to the applied electric fields in terms of changes in the geometrical parameters, dipole moment, HOMO-LUMO gap, and vibrational frequency shift.

View Article and Find Full Text PDF
Article Synopsis
  • Ongoing research is focused on safely storing and utilizing hydrogen as a fuel alternative to carbon-based sources, but challenges like high energy costs due to its low density complicate this goal.
  • Clathrates, or gas hydrates, form when hydrogen is trapped in water molecules, providing a potential solution for safely storing hydrogen as they only require water to create these structures.
  • A proposed solution involves using hydrophobic mesoporous silica as a host material, which allows for hydrogen storage at lower pressures and temperatures, showing about a 20% reduction in required pressure for formation compared to traditional methods, with further insights gained from neutron scattering techniques.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!