Sbk2, a Newly Discovered Atrium-Enriched Regulator of Sarcomere Integrity.

Circ Res

Laboratory of Experimental Cardiology, Department of Cardiology (P.R.R.v.G., J.Z., J.L., S.O.D., C.I.B., T.D.C., M.J.S., D.E.A., D.A.P., A.A.F.d.V.), Leiden University Medical Center, the Netherlands.

Published: June 2022

Background: Heart development relies on tight spatiotemporal control of cardiac gene expression. Genes involved in this intricate process have been identified using animals and pluripotent stem cell-based models of cardio(myo)genesis. Recently, the repertoire of cardiomyocyte differentiation models has been expanded with iAM-1, a monoclonal line of conditionally immortalized neonatal rat atrial myocytes (NRAMs), which allows toggling between proliferative and differentiated (ie, excitable and contractile) phenotypes in a synchronized and homogenous manner.

Methods: In this study, the unique properties of conditionally immortalized NRAMs (iAMs) were exploited to identify and characterize (lowly expressed) genes with an as-of-yet uncharacterized role in cardiomyocyte differentiation.

Results: Transcriptome analysis of iAM-1 cells at different stages during one cycle of differentiation and subsequent dedifferentiation identified ≈13 000 transcripts, of which the dynamic changes in expression upon cardiomyogenic differentiation mostly opposed those during dedifferentiation. Among the genes whose expression increased during differentiation and decreased during dedifferentiation were many with known (lineage-specific) functions in cardiac muscle formation. Filtering for cardiac-enriched low-abundance transcripts, identified multiple genes with an uncharacterized role during cardio(myo)genesis including Sbk2 (SH3 domain binding kinase family member 2). Sbk2 encodes an evolutionarily conserved putative serine/threonine protein kinase, whose expression is strongly up- and downregulated during iAM-1 cell differentiation and dedifferentiation, respectively. In neonatal and adult rats, the protein is muscle-specific, highly atrium-enriched, and localized around the A-band of cardiac sarcomeres. Knockdown of Sbk2 expression caused loss of sarcomeric organization in NRAMs, iAMs and their human counterparts, consistent with a decrease in sarcomeric gene expression as evinced by transcriptome and proteome analyses. Interestingly, co-immunoprecipitation using Sbk2 as bait identified possible interaction partners with diverse cellular functions (translation, intracellular trafficking, cytoskeletal organization, chromatin modification, sarcomere formation).

Conclusions: iAM-1 cells are a relevant and suitable model to identify (lowly expressed) genes with a hitherto unidentified role in cardiomyocyte differentiation as exemplified by Sbk2: a regulator of atrial sarcomerogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.121.319300DOI Listing

Publication Analysis

Top Keywords

gene expression
8
cardiomyocyte differentiation
8
conditionally immortalized
8
nrams iams
8
lowly expressed
8
expressed genes
8
uncharacterized role
8
role cardiomyocyte
8
iam-1 cells
8
sbk2
6

Similar Publications

Unveiling the role of OsSAP17: Enhancing plant resistance to drought and salt.

Plant Physiol Biochem

December 2024

College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Monitoring for Heavy Metal Pollutants, Ministry of Ecology and Environment, Hunan, 410019, China. Electronic address:

With the intensification of climate change coupled with the inadequate agricultural management in certain regions, plants face numerous challenges due to various abiotic stresses. Stress associated proteins (SAPs) are essential functional genes in plants for coping with stress. This research provides a functional analysis of OsSAP17, a protein belonging to the SAP family in rice.

View Article and Find Full Text PDF

Exploring markers in nursing care of prostate cancer.

Medicine (Baltimore)

January 2025

Urology and Metabolic Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Prostate cancer is epithelial malignant prostate hyperplasia caused by a tumor. We found prostate cancer GSE141551 and GSE200879 profiles from gene expression omnibus database, followed by differentially expressed genes (DEGs) analysis, weighted gene co-expression network analysis, protein-protein interaction analysis, gene function enrichment analysis, and comparative toxicology database analysis. Finally, the gene expression heat map was drawn, and miRNA information regulating core DEGs was retrieved.

View Article and Find Full Text PDF

The roles of STAT1, CASP8, and MYD88 in the care of ischemic stroke.

Medicine (Baltimore)

January 2025

Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Ischemic stroke is caused by blockage of blood vessels in brain, affecting normal function. The roles of Signal Transformer and Activator of Transcription 1 (STAT1), CASP8, and MYD88 in ischemic stroke and its care are unclear. The ischemic stroke datasets GSE16561 and GSE180470 were found from the Gene Expression Omnibus database.

View Article and Find Full Text PDF

T-helper 17 (Th17) cells significantly influence the onset and advancement of malignancies. This study endeavor focused on delineating molecular classifications and developing a prognostic signature grounded in Th17 cell differentiation-related genes (TCDRGs) using machine learning algorithms in head and neck squamous cell carcinoma (HNSCC). A consensus clustering approach was applied to The Cancer Genome Atlas-HNSCC cohort based on TCDRGs, followed by an examination of differential gene expression using the limma package.

View Article and Find Full Text PDF

Dissecting the Genetic Basis of Preharvest Sprouting in Rice Using a Genome-Wide Association Study.

J Agric Food Chem

January 2025

Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China.

Preharvest sprouting (PHS) is an unfavorable trait in cereal crops that significantly reduces grain yield and quality. However, the regulatory mechanisms underlying this complex trait are still largely unknown. Here, 276 rice accessions from the 3000 Rice Genomes Project were used to perform a genome-wide association study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!