Among the features of cisplatin chemotherapy-induced peripheral neuropathy are chronic pain and innocuous mechanical hypersensitivity. The complete etiology of the latter remains unknown. Here, we show that cisplatin targets a heterogeneous population of tyrosine hydroxylase-positive (TH) primary afferent dorsal root ganglion neurons (DRGNs) in mice, determined using single-cell transcriptome and electrophysiological analyses. TH DRGNs regulate innocuous mechanical sensation through C-low threshold mechanoreceptors. A differential assessment of wild-type and vitamin E deficient TH DRGNs revealed heterogeneity and specific functional phenotypes. The TH DRGNs comprise; fast-adapting eliciting one action potential (AP; 1-AP), moderately-adapting (≥2-APs), in responses to square-pulse current injection, and spontaneously active (SA). Cisplatin increased the input resistance and AP frequency but reduced the temporal coding feature of 1-AP and ≥2-APs neurons. By contrast, cisplatin has no measurable effect on the SA neurons. Vitamin E reduced the cisplatin-mediated increased excitability but did not improve the TH neuron temporal coding properties. Cisplatin mediates its effect by targeting outward K current, likely carried through K2P18.1 ), discovered through the differential transcriptome studies and heterologous expression. Studies show a potential new cellular target for chemotherapy-induced peripheral neuropathy and implicate the possible neuroprotective effects of vitamin E in cisplatin chemotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9108181PMC
http://dx.doi.org/10.3389/fncel.2022.853035DOI Listing

Publication Analysis

Top Keywords

dorsal root
8
chemotherapy-induced peripheral
8
peripheral neuropathy
8
innocuous mechanical
8
temporal coding
8
cisplatin
7
cisplatin neurotoxicity
4
neurotoxicity targets
4
targets specific
4
specific subpopulations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!