Study on Tourism Consumer Behavior Characteristics Based on Big Data Analysis.

Front Psychol

Shunde Polytechnic, Foshan, China.

Published: May 2022

In terms of scenic marketing, big data research also plays an important role in the precise marketing of scenic spots. This paper has focused on the big data related to scenic spots as the research object, explores the relationship between various subdivision big data and the number of tourists in scenic spots, and investigates the difference and influence of the consumption behavior of the secondary consumption items in the scenic area, to find the potential of the scenic area's business growth and to promote the continuous and stable growth of the scenic area's sales and tourism economy. Using the relevant theories and analysis methods, such as consumer behavior, big data, and tourism consumer behavior, the content mainly focuses on the establishment of the analysis model of the number of tourists in the scenic spot, the data collection, the estimation of the model parameters, the various types of big data, the calculation of the contribution rate of the data to the number of tourists in the scenic spot, and the difference analysis of the secondary consumption items of different types of tourists in the scenic spot. Results show that a multi-objective analysis model is established based on the relevant econometric theories, and an optimization plan is proposed after the multicollinearity diagnosis of the model; to establish a data envelopment analysis (DEA) model of the difference and influence of different types of tourists' consumption behavior in scenic spots and study the consumption behavior characteristics of different types of tourists when they purchase secondary consumption items in scenic spots; the econometric model is used to analyze the big data, adjust the linear relationship of some variables, then adopt the method of gradually adding variables combined with the consumer theory, and finally determine the number of daily tourists as the explained variable, the number of internet protocol (IP), Baidu index, and the virtual value of the weekend, dummy variables for variables, bounce rate, and air pollution as explanatory variables.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9108417PMC
http://dx.doi.org/10.3389/fpsyg.2022.876993DOI Listing

Publication Analysis

Top Keywords

big data
28
scenic spots
20
tourists scenic
16
consumer behavior
12
scenic
12
number tourists
12
consumption behavior
12
secondary consumption
12
consumption items
12
scenic spot
12

Similar Publications

Background And Purpose: This study aims to assess the disease burden and care quality along with cross-country inequalities for stroke at global, regional, and national levels from 1990 to 2021.

Methods: Data on stroke were extracted from the Global Burden of Disease (GBD) study 2021 for the globe, five sociodemographic index (SDI) regions, 21 GBD regions, and 204 countries/territories. The disease burden was quantified using the age-standardized disability-adjusted life years rate (ASDR).

View Article and Find Full Text PDF

Augmenting Circadian Biology Research With Data Science.

J Biol Rhythms

January 2025

Shiu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California.

The nature of biological research is changing, driven by the emergence of big data, and new computational models to parse out the information therein. Traditional methods remain the core of biological research but are increasingly either augmented or sometimes replaced by emerging data science tools. This presents a profound opportunity for those circadian researchers interested in incorporating big data and related analyses into their plans.

View Article and Find Full Text PDF

Recognizing drivers' sleep onset by detecting slow eye movement using a parallel multimodal one-dimensional convolutional neural network.

Comput Methods Biomech Biomed Engin

January 2025

School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, Changzhou University, Changzhou, P.R. China.

Slow eye movements (SEMs) are a reliable physiological marker of drivers' sleep onset, often accompanied by EEG alpha wave attenuation. A parallel multimodal 1D convolutional neural network (PM-1D-CNN) model is proposed to classify SEMs. The model uses two parallel 1D-CNN blocks to extract features from EOG and EEG signals, which are then fused and fed into fully connected layers for classification.

View Article and Find Full Text PDF

Introduction: Smoking behaviors can be quantified using various indices. Previous studies have shown that these indices measure and predict health risks differently. Additionally, the choice of measure differs depending on the health outcome of interest.

View Article and Find Full Text PDF

Predictions of student performance are important to the education system as a whole, helping students to know how their learning is changing and adjusting teachers' and school policymakers' plans for their future growth. However, selecting meaningful features from the huge amount of educational data is challenging, so the dimensionality of student achievement features needs to be reduced. Based on this motivation, this paper proposes an improved Binary Snake Optimizer (MBSO) as a wrapped feature selection model, taking the Mat and Por student achievement data in the UCI database as an example, and comparing the MBSO feature selection model with other feature methods, the MBSO is able to select features with strong correlation to the students and the average number of student features selected reaches a minimum of 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!