Motivation: Many bioinformatics resources are provided as 'web services', with large databases and analysis software stored on a central server, and clients interacting with them using the hypertext transport protocol (HTTP). While some provide only a visual HTML interface, requiring a web browser to use them, many provide programmatic access using a web application programming interface (API) which returns XML, JSON or plain text that computer programs can interpret more easily. This allows access to be automated. Initially, many bioinformatics APIs used the 'simple object access protocol' (SOAP) and, more recently, representational state transfer (REST).
Results: GraphQL is a novel, increasingly prevalent alternative to REST and SOAP that represents the available data in the form of a graph to which any conceivable query can be submitted, and which is seeing increasing adoption in industry. Here, we review the principles of GraphQL, outline its particular suitability to the delivery of bioinformatics resources and describe its implementation in our ZincBind resource.
Availability And Implementation: https://api.zincbind.net.
Supplementary Information: Supplementary data are available at online.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9108989 | PMC |
http://dx.doi.org/10.1093/bioadv/vbab023 | DOI Listing |
Nano Lett
January 2025
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Plant genetic engineering methods are critical for food security and biofuel production and to enable molecular farming. Here, we elucidated how polymeric high aspect ratio nanocarriers can enable DNA delivery to plants and transient expression. We demonstrated that a nanocarrier with 20 nm width, 80 nm length, and a polymer-to-DNA ratio of N/P = 3.
View Article and Find Full Text PDFCell Prolif
January 2025
MOE Key Laboratory of Bioinformatics, Beijing National Research Center for Information Science and Technology, Bioinformatics Division, Tsinghua University, Beijing, China.
Due to the similarity to human hepatocytes, porcine hepatocytes play an important role in hepatic research and drug evaluation. However, once hepatocytes were cultured in vitro, it was often prone to dedifferentiate, resulting in the loss of their characteristic features and normal functions, which impede their application in liver transplantation and hepatotoxic drugs evaluation. Up to now, this process has yet to be thoroughly investigated from the single-cell resolution and multi-omics perspective.
View Article and Find Full Text PDFNat Biotechnol
January 2025
Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany.
Efficient and accurate nanocarrier development for targeted drug delivery is hindered by a lack of methods to analyze its cell-level biodistribution across whole organisms. Here we present Single Cell Precision Nanocarrier Identification (SCP-Nano), an integrated experimental and deep learning pipeline to comprehensively quantify the targeting of nanocarriers throughout the whole mouse body at single-cell resolution. SCP-Nano reveals the tissue distribution patterns of lipid nanoparticles (LNPs) after different injection routes at doses as low as 0.
View Article and Find Full Text PDFComput Biol Med
January 2025
Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh.
The ERBB2 is one of the most studied genes in oncology for its significant role in human malignancies. The metastasis-associated properties that facilitate cancer metastasis can be enhanced by activating the ERBB2 receptor signaling pathways. Additionally, therapeutic resistance is conferred by ERBB2 overexpression via receptor-mediated antiapoptotic signals.
View Article and Find Full Text PDFHeliyon
January 2025
Biotechnology Unit, ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, West Bengal, 700121, India.
Recent advances in genome editing tools and CRISPR-Cas technologies have enabled plant genome engineering reach new heights. The current regulatory exemptions for certain categories of genome edited products, such as those derived from SDN-1 and SDN-2, which are free of any transgene, have significantly accelerated genome editing research in a number of agricultural crop plants in different countries. Although CRISPR-Cas technology is becoming increasingly popular, it is still important to carefully consider a number of factors before planning and carrying conducting CRISPR-Cas studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!