GraphQL for the delivery of bioinformatics web APIs and application to ZincBind.

Bioinform Adv

Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK.

Published: September 2021

AI Article Synopsis

  • - Many bioinformatics resources are hosted as web services, allowing users to interact with large databases and analysis tools via web browsers or programmatically through APIs that support data formats like XML or JSON.
  • - GraphQL is a new alternative to traditional APIs like REST and SOAP, presenting data in a graph format that allows for more flexible queries, making it well-suited for bioinformatics applications.
  • - The ZincBind resource implements GraphQL, and additional information and supplementary data can be accessed online at their designated URL.

Article Abstract

Motivation: Many bioinformatics resources are provided as 'web services', with large databases and analysis software stored on a central server, and clients interacting with them using the hypertext transport protocol (HTTP). While some provide only a visual HTML interface, requiring a web browser to use them, many provide programmatic access using a web application programming interface (API) which returns XML, JSON or plain text that computer programs can interpret more easily. This allows access to be automated. Initially, many bioinformatics APIs used the 'simple object access protocol' (SOAP) and, more recently, representational state transfer (REST).

Results: GraphQL is a novel, increasingly prevalent alternative to REST and SOAP that represents the available data in the form of a graph to which any conceivable query can be submitted, and which is seeing increasing adoption in industry. Here, we review the principles of GraphQL, outline its particular suitability to the delivery of bioinformatics resources and describe its implementation in our ZincBind resource.

Availability And Implementation: https://api.zincbind.net.

Supplementary Information: Supplementary data are available at online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9108989PMC
http://dx.doi.org/10.1093/bioadv/vbab023DOI Listing

Publication Analysis

Top Keywords

delivery bioinformatics
8
bioinformatics resources
8
graphql delivery
4
bioinformatics
4
bioinformatics web
4
web apis
4
apis application
4
application zincbind
4
zincbind motivation
4
motivation bioinformatics
4

Similar Publications

High Aspect Ratio Polymer Nanocarriers for Gene Delivery and Expression in Plants.

Nano Lett

January 2025

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Plant genetic engineering methods are critical for food security and biofuel production and to enable molecular farming. Here, we elucidated how polymeric high aspect ratio nanocarriers can enable DNA delivery to plants and transient expression. We demonstrated that a nanocarrier with 20 nm width, 80 nm length, and a polymer-to-DNA ratio of N/P = 3.

View Article and Find Full Text PDF

Single-cell multi-omics deciphers hepatocyte dedifferentiation and illuminates maintenance strategies.

Cell Prolif

January 2025

MOE Key Laboratory of Bioinformatics, Beijing National Research Center for Information Science and Technology, Bioinformatics Division, Tsinghua University, Beijing, China.

Due to the similarity to human hepatocytes, porcine hepatocytes play an important role in hepatic research and drug evaluation. However, once hepatocytes were cultured in vitro, it was often prone to dedifferentiate, resulting in the loss of their characteristic features and normal functions, which impede their application in liver transplantation and hepatotoxic drugs evaluation. Up to now, this process has yet to be thoroughly investigated from the single-cell resolution and multi-omics perspective.

View Article and Find Full Text PDF

Efficient and accurate nanocarrier development for targeted drug delivery is hindered by a lack of methods to analyze its cell-level biodistribution across whole organisms. Here we present Single Cell Precision Nanocarrier Identification (SCP-Nano), an integrated experimental and deep learning pipeline to comprehensively quantify the targeting of nanocarriers throughout the whole mouse body at single-cell resolution. SCP-Nano reveals the tissue distribution patterns of lipid nanoparticles (LNPs) after different injection routes at doses as low as 0.

View Article and Find Full Text PDF

The ERBB2 is one of the most studied genes in oncology for its significant role in human malignancies. The metastasis-associated properties that facilitate cancer metastasis can be enhanced by activating the ERBB2 receptor signaling pathways. Additionally, therapeutic resistance is conferred by ERBB2 overexpression via receptor-mediated antiapoptotic signals.

View Article and Find Full Text PDF

Recent advances in genome editing tools and CRISPR-Cas technologies have enabled plant genome engineering reach new heights. The current regulatory exemptions for certain categories of genome edited products, such as those derived from SDN-1 and SDN-2, which are free of any transgene, have significantly accelerated genome editing research in a number of agricultural crop plants in different countries. Although CRISPR-Cas technology is becoming increasingly popular, it is still important to carefully consider a number of factors before planning and carrying conducting CRISPR-Cas studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!