Haemophilus influenzae is a human-specific pathogen responsible for respiratory tract infections, meningitis, and sepsis. The study aimed to characterize antibiotic resistance in H. influenzae strains isolated from patients with lower respiratory tract infections over 15 years in Poland. The minimum inhibitory concentrations (MICs) of clinically relevant antibiotics were determined by broth microdilution method. Screening for beta-lactam resistance was performed in all isolates following EUCAST recommendation. Finally, relevant changes in penicillin-binding protein 3 (PBP3) were detected by PCR screening. Of the 1481 isolates collected between 2005 and 2019, 12.6%, 0.2%, 17.1%, and 0.2% were resistant to ampicillin, amoxicillin/clavulanate, cefuroxime, and ceftriaxone, respectively. Among them, 74.4% (1102/1481) of isolates were categorized as BLNAS (β-lactamase negative, ampicillin-susceptible), 13.0% (192/1481) as BLNAS with modified PBP3 (mutations in ftsI gene), 2.6% (39/1481) as BLNAR (β-lactamase negative, ampicillin-resistant), and 0.2% had PBP3 modifications typical for high-BLNAR. Production of β-lactamase characterized 9.7% of isolates (8.6% BLPAR-β-lactamase-positive, ampicillin-resistant, and 1.1% BLPACR-β-lactamase-positive, amoxicillin-clavulanate resistant). Three isolates with PBP3 modifications typical for high-BLNAR proved resistant to ceftriaxone (MIC > 0.125 mg/L). Resistance to ciprofloxacin, chloramphenicol, tetracycline, and trimethoprim-sulfamethoxazole was observed in 0.1%, 0.5%, 1.6%, and 24.7% of isolates, respectively. This is the first report of Polish H. influenzae isolates resistant to third-generation cephalosporins. Polish H. influenzae isolates demonstrate similar susceptibility trends as in many other countries. The substantial proportion of β-lactam-resistant isolates and the emergence of those resistant to third-generation cephalosporins are of great concern and should be under surveillance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10096-022-04457-w | DOI Listing |
APMIS
January 2025
Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
This study prospectively collected the clinical data, information on respiratory pathogens, and laboratory findings of children with Mycoplasma pneumoniae (M. pneumonia) infection who were hospitalized at the First Affiliated Hospital of Anhui Medical University during the M. pneumoniae outbreak in Hefei City, Anhui Province, China, between October 2023 and December 2023.
View Article and Find Full Text PDFWe isolated three genotypes of highly pathogenic avian influenza virus (HPAIV) clade 2.3.4.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
Influenza remains a persistent global health challenge, largely due to the virus' continuous antigenic drift and occasional shift, which impede the development of a universal vaccine. To address this, the identification of broadly neutralizing antibodies and their epitopes is crucial. Nanobodies, with their unique characteristics and binding capacity, offer a promising avenue to identify such epitopes.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India. Electronic address:
Detection of viruses, including coronavirus (SARS-CoV-2), via facile, fast, and optical methods is highly important to control pandemics. In this regard, optically-active nanomaterials and nanoparticles (NPs) are a wise choice due to their long-term stability, ease of functionalization, and modifications. In this work, a nanocomposite based on NiFe layered double hydroxide (LDH) and ZIF-67 metal-organic framework (MOF) was designed and synthesized, and decorated on the surface of the melt-blown mask.
View Article and Find Full Text PDFFood Environ Virol
January 2025
Laboratorio de Ecología Viral y Virus Zoonóticos, Unidad Académica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, 11600, Montevideo, Uruguay.
Human respiratory and enteric viruses are responsible for substantial morbidity and mortality worldwide. Wastewater-based epidemiology utilizing next-generation sequencing serves as an effective tool for monitoring viral circulation dynamics at the community level. However, these complex environmental samples are often laden with other microorganisms and host genomic material, which can hinder the sensitivity of viral detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!