The evolutionary origin of vertebrates included innovations in sensory processing associated with the acquisition of a predatory lifestyle. Vertebrates perceive external stimuli through sensory systems serviced by cranial sensory ganglia, whose neurons arise predominantly from cranial placodes; however, the understanding of the evolutionary origin of placodes and cranial sensory ganglia is hampered by the anatomical differences between living lineages and the difficulty in assigning homology between cell types and structures. Here we show that the homeobox transcription factor Hmx is a constitutive component of vertebrate sensory ganglion development and that in the tunicate Ciona intestinalis, Hmx is necessary and sufficient to drive the differentiation programme of bipolar tail neurons, cells previously thought to be homologues of neural crest. Using Ciona and lamprey transgenesis, we demonstrate that a unique, tandemly duplicated enhancer pair regulated Hmx expression in the stem-vertebrate lineage. We also show notably robust vertebrate Hmx enhancer function in Ciona, demonstrating that deep conservation of the upstream regulatory network spans the evolutionary origin of vertebrates. These experiments demonstrate regulatory and functional conservation between Ciona and vertebrate Hmx, and point to bipolar tail neurons as homologues of cranial sensory ganglia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214386PMC
http://dx.doi.org/10.1038/s41586-022-04742-wDOI Listing

Publication Analysis

Top Keywords

evolutionary origin
12
cranial sensory
12
sensory ganglia
12
origin vertebrates
8
bipolar tail
8
tail neurons
8
vertebrate hmx
8
hmx
6
sensory
6
cranial
5

Similar Publications

Niche shift and localized competitive dynamics influence the persistence and distribution of polyploids in the genus Achillea (Asteraceae).

Ann Bot

January 2025

Key Laboratory of Biodiversity Science and Ecological Engineering of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.

Background And Aims: Competition with sympatric diploid progenitor(s) hinders the persistence of polyploids. The hypothesis that polyploids escape from competition through niche shifts has been widely tested; however, niche escape is unlikely to completely avoid competition. Given species growing in less favorable environments likely have weaker competitive abilities, we hypothesize that polyploid populations tend to persist in areas where their progenitors with relatively low habitat suitability.

View Article and Find Full Text PDF

Mechanisms driving the spatial and temporal patterns of species distribution in the Earth's largest habitat, the deep ocean, remain largely enigmatic. The late Miocene to the Pliocene (~23-2.58 Ma) is a period that was marked by significant geological, climatic, and oceanographic changes.

View Article and Find Full Text PDF

Novel introductions of human-origin H3N2 influenza viruses in swine, Chile.

Front Vet Sci

January 2025

Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.

Influenza A virus (IAV) continuously threatens animal and public health globally, with swine serving as a crucial reservoir for viral reassortment and evolution. In Chile, H1N2 and H3N2 subtypes were introduced in the swine population before the H1N1 2009 pandemic, and the H1N1 was introduced from the H1N1pdm09 by successive reverse zoonotic events. Here, we report two novel introductions of IAV H3N2 human-origin in Chilean swine during 2023.

View Article and Find Full Text PDF

Wild birds and waterfowl serve as the natural reservoirs of avian influenza viruses (AIVs). When AIVs originating from wild birds cross species barriers to infect mammals or humans, they pose a significant threat to public health. The H12 subtype of AIVs primarily circulates in wild birds, with relatively few isolates reported worldwide, and the evolutionary and biological characteristics of H12 subtype AIVs remain largely unknown.

View Article and Find Full Text PDF

Making sense of vertebrate senses from a neural crest and cranial placode evo-devo perspective.

Trends Neurosci

January 2025

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. Electronic address:

The evolution of vertebrates from protochordate ancestors marked the beginning of the gradual transition to predatory lifestyles. Enabled by the acquisition of multipotent neural crest and cranial placode cell populations, vertebrates developed an elaborate peripheral nervous system, equipped with paired sense organs, which aided in adaptive behaviors and ultimately, successful colonization of diverse environmental niches. Underpinning the enduring success of vertebrates is the highly adaptable nature of the peripheral nervous system, which is enabled by the exceptional malleability of the neural crest and placode developmental programs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!