Prion diseases are fatal neurodegenerative conditions that affect humans and animals. Rapid and accurate sequencing of the prion gene PRNP is paramount to human prion disease diagnosis and for animal surveillance programmes. Current methods for PRNP genotyping involve sequencing of small fragments within the protein-coding region. The contribution of variants in the non-coding regions of PRNP including large structural changes is poorly understood. Here, we used long-range PCR and Nanopore sequencing to sequence the full length of PRNP, including its regulatory region, in 25 samples from blood and brain of individuals with inherited or sporadic prion diseases. Nanopore sequencing detected the same variants as identified by Sanger sequencing, including repeat expansions/deletions. Nanopore identified additional single-nucleotide variants in the non-coding regions of PRNP, but no novel structural variants were discovered. Finally, we explored somatic mosaicism of PRNP's octapeptide repeat region, which is a hypothetical cause of sporadic prion disease. While we found changes consistent with somatic mutations, we demonstrate that they may have been generated by the PCR. Our study illustrates the accuracy of Nanopore sequencing for rapid and field prion disease diagnosis and highlights the need for single-molecule sequencing methods for the detection of somatic mutations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117325PMC
http://dx.doi.org/10.1038/s41598-022-12130-7DOI Listing

Publication Analysis

Top Keywords

nanopore sequencing
16
prion disease
12
sequencing
8
sequencing prion
8
prion diseases
8
disease diagnosis
8
variants non-coding
8
non-coding regions
8
regions prnp
8
prnp including
8

Similar Publications

A male in his 20s presented with episodic headache and subsequently developed episodic unilateral weakness, dysphasia and encephalopathy. These paroxysmal episodes persisted over time with the development of background cognitive impairment and neuropsychiatric symptoms. MRI surveillance demonstrated progressive T2 hyperintensity with focal cortical oedema correlating to symptoms observed during clinical episodes.

View Article and Find Full Text PDF

Towards effective functionalization of nanopores/nanochannels: the role of amidation reactions.

Chem Commun (Camb)

January 2025

State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.

In recent years, researchers have drawn inspiration from natural ion channels to develop various artificial nanopores/nanochannels, including solid-state and biological. Through imitating the precise selectivity and single molecule sensing exhibited by natural ion channels, nanopores/nanochannels have been widely used in many fields, such as analyte detection, gene sequencing and so on. In these applications, the surface functionalization of nanopores/nanochannels directly determines the effectiveness in quantitative analysis and single molecule detection.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.

Background: The effect size of APOE4 varies across genetic ancestries with African (AFR) local ancestry conferring a lower risk when compared to other ancestries. Recently, we identified a strong effect of the A allele of rs10423769 (with a minor allele frequency of 0.12 in AFR and 0.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Fujirebio Europe N.V., Ghent, Belgium.

Background: Apolipoprotein E (APOE) ε4 is a significant genetic risk factor for late-onset Alzheimer's Disease and appears to be closely related with brain amyloidosis. Current identification methods for APOE ε4 carriers are mostly based on genotyping which cannot always predict the specific ApoE protein isoform. We present a case study of a sample with a discordant result for genotype compared to the protein isoform (proteotype) and we reflect on possible implications for future applications.

View Article and Find Full Text PDF

Low-Pass Whole Genome Sequencing of Cell-Free DNA from Cerebrospinal Fluid: A Focus on Pediatric Central Nervous System Tumors.

Clin Chem

January 2025

Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, United States.

Background: Cell-free DNA (cfDNA) technology has allowed for cerebrospinal fluid (CSF), a previously underutilized biofluid, to be analyzed in new ways. The interrogation of CSF-derived cfDNA is giving rise to novel molecular insights, particularly in pediatric central nervous system (CNS) tumors, where invasive tumor tissue acquisition may be challenging. Contemporary disease monitoring is currently restricted to radiographic surveillance by magnetic resonance imaging and CSF cytology to directly detect abnormal cells and cell clusters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!