Renal biopsy is the gold standard for Immunoglobulin A nephropathy (IgAN) but poses several problems. Thus, we aimed to establish a noninvasive model for predicting the risk probability of IgAN by analyzing routine and serological parameters. A total of 519 biopsy-diagnosed IgAN and 211 non-IgAN patients were recruited retrospectively. Artificial neural networks and logistic modeling were used. The receiver operating characteristic (ROC) curve and performance characteristics were determined to compare the diagnostic value between the two models. The training and validation sets did not differ significantly in terms of any variables. There were 19 significantly different parameters between the IgAN and non-IgAN groups. After multivariable logistic regression analysis, age, serum albumin, serum IgA, serum immunoglobulin G, estimated glomerular filtration rate, serum IgA/C3 ratio, and hematuria were found to be independently associated with the presence of IgAN. A backpropagation network model based on the above parameters was constructed and applied to the validation cohorts, revealing a sensitivity of 82.68% and a specificity of 84.78%. The area under the ROC curve for this model was higher than that for logistic regression model (0.881 vs. 0.839). The artificial neural network model based on routine markers can be a valuable noninvasive tool for predicting IgAN in screening practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117316 | PMC |
http://dx.doi.org/10.1038/s41598-022-11964-5 | DOI Listing |
Sensors (Basel)
December 2024
Department of Information and Electronic Engineering, International Hellenic University, 57001 Thessaloniki, Greece.
Recent advances in emotion recognition through Artificial Intelligence (AI) have demonstrated potential applications in various fields (e.g., healthcare, advertising, and driving technology), with electroencephalogram (EEG)-based approaches demonstrating superior accuracy compared to facial or vocal methods due to their resistance to intentional manipulation.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Center for Precision Neutrino Research, Department of Physics, Chonnam National University, Gwangju 61186, Republic of Korea.
Reactor-emitted electron antineutrinos can be detected via the inverse beta decay reaction, which produces a characteristic signal: a two-fold coincidence between a prompt positron event and a delayed neutron capture event within a specific time frame. While liquid scintillators are widely used for detecting neutrinos reacting with matter, detection is difficult because of the low interaction of neutrinos. In particular, it is important to distinguish between neutron (n) and gamma (γ) signals.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
In composite structures, the precise identification and localization of damage is necessary to preserve structural integrity in applications across such fields as aeronautical, civil, and mechanical engineering. This study presents a deep learning (DL)-assisted framework for simultaneous damage localization and severity assessment in composite structures using Lamb waves (LWs). Previous studies have often focused on either damage detection or localization in composite structures.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia.
Traditional tactile brain-computer interfaces (BCIs), particularly those based on steady-state somatosensory-evoked potentials, face challenges such as lower accuracy, reduced bit rates, and the need for spatially distant stimulation points. In contrast, using transient electrical stimuli offers a promising alternative for generating tactile BCI control signals: somatosensory event-related potentials (sERPs). This study aimed to optimize the performance of a novel electrotactile BCI by employing advanced feature extraction and machine learning techniques on sERP signals for the classification of users' selective tactile attention.
View Article and Find Full Text PDFSensors (Basel)
December 2024
The Abdus Salam International Centre for Theoretical Physics (ICTP), 34151 Trieste, Italy.
Visual examination of nails can reflect human health status. Diseases such as nutritive imbalances and skin diseases can be identified by looking at the colors around the plate part of the nails. We present the AI-based NAILS method to detect fingernails through segmentation and labeling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!