Purpose: GPR120 has been reported to ameliorate inflammation in diabetes and diabetic complications. In this study, GW9508, the GPR120 agonist, was utilized in human retinal microvascular endothelial cells (HRMECs) exposed to high glucose (HG) to investigate the involvement of GPR120 in cellular viability and apoptosis as well as the association with the NLRP3 inflammasome.
Methods: The expression of GPR120 in HRMECs cultured under HG was firstly detected by Western blotting. HRMECs were then assigned to the normal control, GW9508, HG, and HG + GW9508 groups. The expression of the NLRP3 inflammasome consists of NLRP3, ASC, and caspase-1 and was detected by Western blotting and the downstream IL-1 and IL-18 by ELISA. The cellular viability and apoptosis of HRMECs were detected by CCK-8 and flow cytometry, respectively. The expressions of apoptosis-related proteins Bax and Bcl-2 were detected by Western blotting. Finally, nonspecific siRNA (NS) or GPR120 siRNA (siGPR120) was transfected to the cells, followed by stimulation with or without GW9508 or HG, and the expression of NLRP3, ASC, and caspase-1 were detected by Western blotting in these groups.
Results: GPR120 is expressed in HRMECs, and HG can reduce its expression in a time-dependent manner. GW9508 can attenuate inflammation by reducing the expression of NLRP3, ASC, caspase-1, IL-1 and IL-18 under HG. GW9508 rescues the viability of HRMCs and reduces cell apoptosis by preventing an increase in Bax expression and the reduction in Bcl-2 expression. Additionally, knockdown of GPR120 by siRNA weakened the effects of GW9508 on NLRP3 inflammasome expression.
Conclusions: Activation of GPR120 protects retinal vascular endothelial cells from HG through inhibiting NLRP3 inflammasome. Thus, GPR120 might be a potential therapeutic target to reduce retinal endothelial damage in diabetic retinopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/a-1811-7099 | DOI Listing |
Cardiovasc Diabetol
January 2025
Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China.
Background: Inflammatory diseases impair the reparative properties of endothelial progenitor cells (EPC); however, the involvement of diabetes in EPC dysfunction associated with myocardial infarction (MI) remains unknown.
Methods: A model was established combining high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice with myocardial infarction. The therapeutic effects of transplanted wild-type EPC, Nlrp3 knockout EPC, and Nlrp3 overexpression EPC were evaluated.
Cell Commun Signal
January 2025
Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Background: Macrophages play a crucial role in chronic gastritis induced by the pathogenic Helicobacter pylori (H. pylori) infection. NLRP3 inflammasome has emerged as an important component of inflammatory processes.
View Article and Find Full Text PDFImmunopharmacol Immunotoxicol
January 2025
Tobacco and Health Research Center, Endocrinology and Metabolism Research Center, Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
Traumatic brain injury (TBI) precipitates a neuroinflammatory cascade, with the NLRP3 inflammasome emerging as a critical mediator. This review scrutinizes the complex activation pathways of the NLRP3 inflammasome by underscoring the intricate interplay between calcium signaling, mitochondrial disturbances, redox imbalances, lysosomal integrity, and autophagy. It is hypothesized that a combination therapy approach-integrating NF-κB pathway inhibitors with NLRP3 inflammasome antagonists-holds the potential to synergistically dampen the inflammatory storm associated with TBI.
View Article and Find Full Text PDFJ Clin Periodontol
January 2025
Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
Aim: To explore the potential roles of mitochondrial dysfunction in the initiation of inflammation in periodontal macrophages and to determine the mechanism underlying the involvement of dynamin-related protein 1 (Drp1) in macrophage inflammatory responses through its interaction with hexokinase 1 (HK1).
Materials And Methods: Gingival tissues were collected from patients diagnosed with periodontitis or from healthy volunteers. Drp1 tetramer formation and phosphorylation were analysed using western blot.
Am J Physiol Cell Physiol
January 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
Arterial stiffening is a hallmark of chronic kidney disease (CKD) related cardiovascular events and is primarily attributed to the elevated matrix stiffness. Stiffened arteries are accompanied by low-grade inflammation, but the causal effects of matrix stiffness on inflammation remain unknown. For analysis of the relationship between arterial stiffness and vascular inflammation, pulse wave velocity (PWV) and aortic inflammatory markers were analyzed in an adenine-induced mouse model of CKD in chronological order.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!