Overexpressed tubulin and continuously activated STAT3 play important roles in the development of many cancers and are potential therapeutic targets. A series of 4-methoxy-N -(1-naphthalene) benzenesulfonamide derivatives were designed and optimized based on β-tubulin inhibitor ABT-751 to verify whether STAT3 and tubulin dual target inhibitors have better antitumor effects. Compound DL14 showed strong inhibitory activity against A549, MDA-MB-231 and HCT-116 cells in vitro with IC values of 1.35 μM, 2.85 μM and 3.04 μM, respectively. Further experiments showed that DL14 not only competitively bound to colchicine binding site to inhibit tubulin polymerization with IC values 0.83 μM, but also directly bound to STAT3 protein to inhibit STAT3 phosphorylation with IC value of 6.84 μM. Three other compounds (TG03, DL15, and DL16) also inhibit this phosphorylation. In terms of single target inhibition, DL14 is slightly inferior to positive drugs, but it shows a good anti-tumor effect in vivo, and can inhibit >80% of xenograft tumor growth. This study describes a novel 4-methoxy-N-(1-naphthyl) benzenesulfonamide skeleton as an effective double-targeted anticancer agent targeting STAT3 and tubulin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2022.105864DOI Listing

Publication Analysis

Top Keywords

stat3 tubulin
8
stat3
6
tubulin
5
discovery 4-methoxy-n-1-naphthylbenzenesulfonamide
4
4-methoxy-n-1-naphthylbenzenesulfonamide derivatives
4
derivatives small
4
small molecule
4
molecule dual-target
4
dual-target inhibitors
4
inhibitors tubulin
4

Similar Publications

Background: Treatment with regorafenib, a multiple-kinase inhibitor, to manage metastatic colorectal cancers (mCRCs) shows a modest improvement in overall survival but is associated with severe toxicities. Thus, to reduce regorafenib-induced toxicity, we used regorafenib at low concentration along with a dual JAK/HDAC small-molecule inhibitor (JAK/HDACi) to leverage the advantages of both JAK and HDAC inhibition to enhance antitumor activity. The therapeutic efficacy and safety of the combination treatment was evaluated with CRC models.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a common progressive degenerative disease of the central nervous system in aging populations. This study aimed to investigate the effects of combined catalpol and tetramethylpyrazine (CT) in promoting axonal plasticity in AD and the potential underlying mechanism. Astrocytes were treated with different concentrations of compatible CT.

View Article and Find Full Text PDF

Isobavachalcone, a natural sirtuin 2 inhibitor, exhibits anti-triple-negative breast cancer efficacy in vitro and in vivo.

Phytother Res

April 2024

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.

Triple-negative breast cancer (TNBC) is the most aggressive and lethal clinical subtype and lacks effective targeted therapies at present. Isobavachalcone (IBC), the main active component of Psoralea corylifolia L., has potential anticancer effects.

View Article and Find Full Text PDF

Paclitaxel is widely used to treat cancer, however, drug resistance limits its clinical utility. STAT3 is constitutively activated in some cancers, and contributes to chemotherapy resistance. Currently, several STAT3 inhibitors including WP1066 are used in cancer clinical trials.

View Article and Find Full Text PDF

Hydroxy fatty acids (HFAs) constitute a class of lipids, distinguished by the presence of a hydroxyl on a long aliphatic chain. This study aims to expand our insights into HFA bioactivities, while also introducing new methods for asymmetrically synthesizing unsaturated and saturated HFAs. Simultaneously, a procedure previously established by us was adapted to generate new HFA regioisomers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!