Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: KCNQ2-epileptic encephalopathy (EE) is a neonatal epilepsy syndrome characterized by a typical clinical presentation and EEG recording, but without any brain or cortical abnormal development on MRI. Most of the patients have a severe developmental impairment. The epileptogenic mechanisms are thought to be the result of the changes of the M-current density causing a change of brain excitability. Although recent studies allow us to better understand the physiopathology of KCNQ2-EE, the neuropathology of this ion channel dysfunction has only been previously described in a single case report.
Methods: We report the neuropathology study of a case of KCNQ2-EE with a typical electro-phenotype due to a de novo heterozygous single nucleotide pathogenic variant in the exon 5 of the KCNQ2 gene (NM_172107.2:c.802C>T; p.Leu268Phe).
Results: At the macroscopic level, the brain had a normal structure with a normal neocortical gyral pattern. At the histological level, the cortex had a usual six-layer lamination in all lobes but blurred gray-white matter boundaries due to excessive heterotopic neurons in deep white matter were observed. This diffuse mild malformation of cortical development is suggestive of a neuronal migration disorder.
Conclusion: In recent years, our understanding of the role of ion channel dysfunctions in early brain development has expanded from the occurrence of EE to brain malformation. Through this rare neuropathological report, we emphasize the role of KCNQ2 channels in the process of cortical development. As for other genetic neonatal onset epilepsies, more reports are needed to further delineate the range of neuropathological abnormalities for KCNQ2-EE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.seizure.2022.05.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!