In recent years, the wide application of artificial intelligence (AI) has dramatically improved the work efficiency of clinicians and reduced their workload. This review provides a glance at the latest advances in AI-assisted diagnosis and prognostic prediction of ovarian cancer (OC). We performed an advanced search in PubMed and IEEE/IET Electronic Library, and included 39 articles in this review. A comprehensive and objective criterion was built to assess the reliability and quality of all studies from four aspects: the size of datasets for model development, research design, the division of training sets and test sets, and the type of quantitative performance indicators. This review analyzed the construction of AI models, including data pre-processing methods, feature selection techniques, AI classifiers, or algorithms. Additionally, we compared the performance of these models built on different datasets, which may support researchers for further iteration and development of AI. Finally, we discussed the challenges and future directions for AI application in medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2022.105608DOI Listing

Publication Analysis

Top Keywords

application artificial
8
artificial intelligence
8
diagnosis prognostic
8
prognostic prediction
8
prediction ovarian
8
ovarian cancer
8
intelligence diagnosis
4
cancer years
4
years wide
4
wide application
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!