Effects of Molecular Structure on Organic Contaminants' Degradation Efficiency and Dominant ROS in the Advanced Oxidation Process with Multiple ROS.

Environ Sci Technol

State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.

Published: June 2022

AI Article Synopsis

  • This study explores how the molecular structure of contaminants affects their degradation efficiency and the types of reactive oxygen species (ROS) produced during advanced oxidation processes (AOPs) using a peroxymonosulfate (PMS) activation system.
  • It was found that the degradation of 19 different contaminants varied significantly, with specific ROS like sulfate (SO), hydroxyl (OH), and superoxide (O) dominating depending on the contaminant type, influenced by their structural characteristics.
  • The research suggests that understanding these molecular interactions can help design more effective AOPs for wastewater treatment, making them more practical and efficient in real-world applications.

Article Abstract

In this study, the previously overlooked effects of contaminants' molecular structure on their degradation efficiencies and dominant reactive oxygen species (ROS) in advanced oxidation processes (AOPs) are investigated with a peroxymonosulfate (PMS) activation system selected as the typical AOP system. Averagely, degradation efficiencies of 19 contaminants are discrepant in the CoCaAl-LDO/PMS system with production of SO, OH, and O. Density functional theory calculations indicated that compounds with high , low-energy gap (Δ = - ), and low vertical ionization potential are more vulnerable to be attacked. Further analysis disclosed that the dominant ROS was the same one when treating similar types of contaminants, namely SO, O, O, and OH for the degradation of CBZ-like compounds, SAs, bisphenol, and triazine compounds, respectively. This phenomenon may be caused by the contaminants' structures especially the commonly shared or basic parent structures which can affect their effective reaction time and second-order rate constants with ROS, thus influencing the contribution of each ROS during its degradation. Overall, the new insights gained in this study provide a basis for designing more effective AOPs to improve their practical application in wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.2c00464DOI Listing

Publication Analysis

Top Keywords

molecular structure
8
dominant ros
8
ros advanced
8
advanced oxidation
8
degradation efficiencies
8
ros
6
degradation
5
effects molecular
4
structure organic
4
organic contaminants'
4

Similar Publications

Cytochromes P450 (CYP) form one of the largest enzyme superfamilies on Earth, with similar structural fold but biological functions varying from synthesis of physiologically essential compounds to metabolism of myriad xenobiotics. Here we determined the crystal structures of Coryphaenoides armatus and human sterol 14α-demethylases (CYP51s). Both structures reveal elements that imply elevated conformational flexibility, uncovering molecular basis for faster catalytic rates, lower substrate selectivity, and resistance to inhibition.

View Article and Find Full Text PDF

SARS-CoV-2 continues to mutate, leading to breakthrough infections. The development of new vaccine strategies to combat various strains is crucial. Protein cyclization can enhance thermal stability and may improve immunogenicity.

View Article and Find Full Text PDF

Circularly Polarized Luminescence in Cellulose-Based Assemblies: Synthesis, Regulation, and Application.

Small

December 2024

State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.

Currently, circularly polarized luminescence (CPL) has drawn wide interest in 3D display, information storage, and optical sensing. However, traditional synthetic paths are often accompanied by low chiral optical intensity and complex processes. Cellulose nanocrystals (CNCs), with the properties of liquid crystals, can spontaneously arrange into the left-handed layered nanofilm, which enables them candidates in the construction of CPL materials.

View Article and Find Full Text PDF

Modulating Oxygen Reduction Activity in Chalcogenophene-Incorporated Organic Electrocatalysts through Main-Group Element Engineering.

Small

December 2024

State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.

Organic small molecules (OSMs) with well-defined structures are crucial integral components of cathode catalysts for fuel cells. Despite the acknowledged potential of heteroatom doping to enhance the catalytic performance of metal-free carbon-based catalysts, there exists a notable gap in conducting molecular structure and catalytic activity, particularly under the premise of maintaining a constant molecular skeleton and with a clear molecular structure. Herein, the charge distribution is modulated by introducing different chalcogens into the same molecular skeleton through main-group engineering.

View Article and Find Full Text PDF

Conjugated Phthalocyanine-Based Mesoporous Covalent Organic Frameworks for Efficient Anodic Lithium Storage.

Small

December 2024

State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.

Organic anode materials have been recognized as promising candidates for low-cost and sustainable lithium-ion batteries (LIBs), which however suffer from the inferior cycling stability and low conductivity with unsatisfactory LIBs performance. Herein, two conjugated phthalocyanine-based covalent organic frameworks (COFs), namely CoPc-Ph-COF and CoPc-3Ph-COF, are synthesized by the nucleophilic substitution reaction of hexafluorophthalocyanine cobalt (II) (CoPcF) with 1,2,4,5-tetrahydroxybenzene and 9,10-dimethyl-2,3,6,7-tetrahydroxyanthracene, respectively. Powder X-ray diffraction and electron microscopy analysis reveal the crystalline porous structure of both COFs with a pore size of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!