Bispecific T-cell engager (BiTE) molecules have great potential to treat cancer. Nevertheless, dependent on the targeted tumor antigen, the mechanism of action that drives efficacy may also contribute to on-target/off-tumor toxicities. In this study, we characterize an anti-CD70 half-life extended BiTE molecule (termed N6P) which targets CD70, a TNF family protein detected in several cancers. First, the therapeutic potential of N6P was demonstrated using in vitro cytotoxicity assays and an orthotopic xenograft mouse study resulting in potent killing of CD70+ cancer cells. Next, in vitro characterization demonstrated specificity for CD70 and equipotent activity against human and cynomolgus monkey CD70+ cells. To understand the potential for on-target toxicity, a tissue expression analysis was performed and indicated CD70 is primarily restricted to lymphocytes in normal healthy tissues and cells. Therefore, no on-target toxicity was expected to be associated with N6P. However, in a repeat-dose toxicology study using cynomolgus monkeys, adverse N6P-mediated inflammation was identified in multiple tissues frequently involving the mesothelium and epithelium. Follow-up immunohistochemistry analysis revealed CD70 expression in mesothelial and epithelial cells in some tissues with N6P-mediated injury, but not in control tissues or those without injury. Collectively, the data indicate that for some target antigens such as CD70, BiTE molecules may exhibit activity in tissues with very low antigen expression or the antigen may be upregulated under stress enabling molecule activity. This work illustrates how a thorough understanding of expression and upregulation is needed to fully address putative liabilities associated with on-target/off-tumor activity of CD3 bispecific molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/toxsci/kfac052 | DOI Listing |
Nat Biotechnol
January 2025
Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
The complex nature of the immunosuppressive tumor microenvironment (TME) requires multi-agent combinations for optimal immunotherapy. Here we describe multiplex universal combinatorial immunotherapy via gene silencing (MUCIG), which uses CRISPR-Cas13d to silence multiple endogenous immunosuppressive genes in the TME, promoting TME remodeling and enhancing antitumor immunity. MUCIG vectors targeting four genes delivered by adeno-associated virus (AAV) (Cd274/Pdl1, Lgals9/Galectin9, Lgals3/Galectin3 and Cd47; AAV-Cas13d-PGGC) demonstrate significant antitumor efficacy across multiple syngeneic tumor models, remodeling the TME by increasing CD8 T-cell infiltration while reducing neutrophils.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address:
Activated sludge enriches vast amounts of micropollutants (MPs) when wastewater is treated, posing potential environmental risks. While standard methods typically focus on target analysis of known compounds, the identity, structure, and concentration of transformation products (TPs) of MPs remain less understood. Here, we employed a novel approach that integrates machine learning for the quantification of nontarget TPs with advanced target, suspect, and nontarget screening strategies.
View Article and Find Full Text PDFProtein Cell
January 2025
State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China.
Antibody-drug conjugates (ADCs) represent a promising class of targeted cancer therapeutics that combine the specificity of monoclonal antibodies with the potency of cytotoxic payloads. Despite their therapeutic potential, the use of ADCs faces significant challenges, including off/on-target toxicity and resistance development. This review examines the current landscape of ADC development, focusing on the critical aspects of target selection and antibody engineering.
View Article and Find Full Text PDFMol Ther
January 2025
Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China; Shenzhen University-Haoshi Cell Therapy Institute, Shenzhen, China. Electronic address:
Pancreatic cancer (PC) is one of the most lethal digestive system tumors. Claudin18.2 is highly expressed in PC tissue and could serve as a suitable target for CAR-T therapy.
View Article and Find Full Text PDFJ Immunother Cancer
December 2024
Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
Objective: Targeting CD47 for cancer immunotherapy has been studied in many clinical trials for the treatment of patients with advanced tumors. However, this therapeutic approach is often hampered by on-target side effects, physical barriers, and immunosuppressive tumor microenvironment (TME).
Methods: To improve therapeutic efficacy while minimizing toxicities, we engineered an oncolytic vaccinia virus (OVV) encoding an anti-CD47 nanobody (OVV-αCD47nb).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!