The detection and elimination of antibiotic contaminants, such as oxytetracycline (OTC), a broad-spectrum tetracycline antibiotic, would be of help in efficient environmental monitoring, agriculture and food safety tests. Nevertheless, currently available methodologies, which mostly rely on the chromatographic separation of OTC, suffer from low sensitivity and complicated processes. Thus, we report here on the design and synthesis of a fluorescent sensor based on molecularly imprinted magnetic halloysite nanotubes (referred to as MHNTs@FMIPs) for the effective detection and purification of OTC in actual environmental samples. The fluorescence of the MHNTs@FMIPs was quenched obviously upon loading with OTC, covering a linear concentration range of 10-300 nM with a limit of detection (LOD) as low as 8.1 nM. The imprinting factor is 4.47, indicating an excellent specificity. Furthermore, the MHNTs@FMIPs can be applied to the quantitative detection of OTC (5 cycles of 300 nM) in aquaculture wastewater and Yangtze River water, demonstrating their immense application potential.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2tb00497fDOI Listing

Publication Analysis

Top Keywords

molecularly imprinted
8
detection
5
otc
5
imprinted antibiotic
4
antibiotic receptor
4
receptor magnetic
4
magnetic nanotubes
4
nanotubes detection
4
detection removal
4
removal environmental
4

Similar Publications

Portable dual-function ratio-type triple-emission molecularly imprinted fluorescence sensor for the simultaneous visual detection of hepatitis A and B viruses.

Anal Chim Acta

January 2025

The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China. Electronic address:

Background: Viral epidemics have long endangered human health and had dramatic impacts on environment and society. The currently known viruses and the rapid emergence of previously unknown viruses lead to an urgent need for effective virus detection strategies. It is important to develop methods that can detect multiple related viruses simultaneously in order to improve detection efficiency and to avoid treatment delays due to misdiagnoses.

View Article and Find Full Text PDF

Low-potential bionic electrochemiluminescence sensing platform based on SnS/CuNWs synergistic promotion for highly selective detection of glycocholic acid.

Anal Chim Acta

January 2025

Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:

Background: Glycholic acid (GCA) can dynamically reflect the process of liver injury, and can be used for early diagnosis and curative effect evaluation of early hepatitis and cirrhosis. The highly sensitive detection of liver injury markers is conducive to a more accurate and effective auxiliary diagnosis of liver diseases. In addition, the low trigger potential helps to avoid more chemical interference and improve the detection sensitivity.

View Article and Find Full Text PDF

Detection of the SARS-CoV-2 nucleoprotein by electrochemical biosensor based on molecularly imprinted polypyrrole formed on self-assembled monolayer.

Biosens Bioelectron

December 2024

Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225, Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical and Technological Sciences (FTMC), Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania. Electronic address:

Herein, we report the development and characterisation of an electrochemical biosensor with a polypyrrole (Ppy)-based molecularly imprinted polymer (MIP) for the serological detection of the recombinant nucleocapsid protein of SARS-CoV-2 (rN). The electrochemical biosensor utilises a Ppy-based MIP formed on a self-assembled monolayer (SAM) at the gold interface to enhance Ppy layer stability on the screen-printed electrode (SPE). Electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV) were employed for the electrochemical characterisation of screen-printed gold electrodes (SPGEs) modified with MIP or non-imprinted polymer (NIP) layers.

View Article and Find Full Text PDF

Although fluorescence analysis methods are widely used in pesticide residue detection, improving their sensitivity and selectivity remains a challenge. This paper presents a novel ratio fluorescence sensor based on the molecular imprinting polymers (MIPs) and metal-enhanced fluorescence for visual detection of dicamba (DIC). Calcium fluoride (CaF) quantum dots (QDs) were immobilized on the surface of Ag@MIPs, resulting in a blue fluorescence response signal (Ag@MIPs-CaF).

View Article and Find Full Text PDF

Mycotoxins are detectable in 60-80% of food crops, posing significant threats to human health and food security, and causing substantial economic losses. Most mitigation approaches focus on detecting mycotoxins with standard methods based on liquid chromatography coupled with mass spectrometry (LC-MS). Typical MS methods require extensive sample preparation and clean-up due to the matrix effect, followed by time-consuming LC separation, complicating the analysis process and limiting analytical throughput.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!