The poor mechanical strength of the poly(-[3-(dimethylamino)propyl] methacrylamide) (PDMAPMAAm) hydrogel limits its application as a drug delivery system and antimicrobial agent. In this study, both its morphology and antibacterial effectiveness were controlled through free radical solution polymerization in the presence of cetyltrimethylammonium bromide (CTAB; cationic nonreactive surfactant), forming lyotropic liquid crystal (LLC) mesophases. All the templated reactions proceeded in four different CTAB concentrations with three different concentrations of DMAPMAAm (2.0, 3.0 and 4.0 mol L), which were carried out in distilled-deionized water (DDW) using potassium persulfate (KPS) and ,'-methylenebisacrylamide (BIS) as the initiator and crosslinker, respectively. The pH-dependent phase transition temperature (34 °C at pH 14), compression moduli, antibacterial and diffusion properties, and the effect of the LLC mesophases of CTAB on the hydrogel properties were investigated by mechanical measurements, image analysis, inhibition zone tests, X-ray diffractograms and polarized optical microscopy (POM). It was found that the compression moduli of the templated (T)-PDMAPMAAm hydrogels increased by nearly ten times (from ∼3.0 to 30.0 kPa) compared to that of the isotropic (I) ones. The POM and XRD results before the removal of CTAB exhibited the formation of lamellar and hexagonal mesophases. Further, the inhibition zones showed the ability of the I-PDMAPMAAm hydrogels to reduce the activity of even in the absence of CTAB, gentamicin (GS) and ciprofloxacin (CF). This was because the quaternary ammonium (QA) groups on the DMAPMAAm units could interact with the bacterial membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2sm00186aDOI Listing

Publication Analysis

Top Keywords

poly-[3-dimethylaminopropyl] methacrylamide
8
free radical
8
polymerization presence
8
presence cetyltrimethylammonium
8
cetyltrimethylammonium bromide
8
lyotropic liquid
8
liquid crystal
8
llc mesophases
8
compression moduli
8
ctab
5

Similar Publications

This study aims to develop a series of cation exchange hydrogel resins via gamma irradiation technique through copolymerizing styrene sodium sulfonate with three acrylamide derivatives (designated as poly(X-co-styrene sodium sulfonate), where X refers to acrylamide (PAASS), methacrylamide (PMASS), and isopropyl acrylamide (PIASS)). The prepared hydrogel resins were characterized and tested for the adsorption removal of hard/scale metal cations (e.g.

View Article and Find Full Text PDF

The development of stimuli-responsive drug delivery systems enables targeted delivery and environment-controlled drug release, thereby minimizing off-target effects and systemic toxicity. We prepared and studied tailor-made dual-responsive systems (thermo- and pH-) based on synthetic diblock copolymers consisting of a fully hydrophilic block of poly[-(1,3-dihydroxypropyl)methacrylamide] (poly(DHPMA)) and a thermoresponsive block of poly[-(2,2-dimethyl-1,3-dioxan-5-yl)methacrylamide] (poly(DHPMA-acetal)) as drug delivery and smart stimuli-responsive materials. The copolymers were designed for eventual medical application to be fully soluble in aqueous solutions at 25 °C.

View Article and Find Full Text PDF

The interfacial behavior of micro-/nanogels is governed to a large extent by the hydrophobicity of their polymeric network. Prevailing studies to examine this influence mostly rely on external stimuli like temperature or pH to modulate the particle hydrophobicity. Here, a sudden transition between hydrophilic and hydrophobic state prevents systematic and gradual modulation of hydrophobicity.

View Article and Find Full Text PDF

The growing need for energy and the depletion of oil wells necessitate advanced Enhanced Oil Recovery (EOR) techniques, particularly water and polymer flooding, which play a crucial role in augmenting hydrocarbon recovery rates. However, water flooding in high-permeability layers often leads to water breakthroughs, reduced sweep efficiency, and the formation of preferential channels, posing significant challenges to oil recovery and reservoir management. Conformance control treatments, including the use of polymer microspheres, offer a promising solution by sealing high-permeability zones and enhancing sweep efficiency.

View Article and Find Full Text PDF

Eco-friendly property modulation of biobased gels of carboxymethyl cellulose-integrated poly(tertiary amine)s for the removal of azo-food dyes.

Int J Biol Macromol

December 2024

Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, 34469 Maslak, Istanbul, Turkey. Electronic address:

Anionic polysaccharide-based gels enable the design of biobased materials with biochemical properties, non-toxic and natural origin. A new set of cationic gels was prepared from carboxymethylcellulose (CMC)-doped tertiary amino functional cationic monomers 2-(dimethylamino)ethyl methacrylate and N-(3-(dimethylamino)propyl) methacrylamide via the formation of semi-interpenetrated network (semi-IPN) at different polymerization temperatures, T. A detailed understanding of the temperature-dependent synthesis and physicochemical response is required for the design of interpenetrating networks with CMC as an adsorbent that provides effective sources for the removal of azo-food dyes such as tartrazine and carmoisine from aqueous solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!