AI Article Synopsis

Article Abstract

Cadmium sulfide (CdS) is an important semiconductor for electronic and photovoltaic applications, particularly when utilized as a thin film for window layers in CdTe solar cells. Deposition of thin-film CdS through the decomposition of single-source precursors is an attractive approach due to the facile, low-temperature, and rapid nature of this approach. Tailoring the precursor to affect the decomposition properties is commonly employed to tune desirable temperatures of decomposition. However, altering the precursor structure and the effect this has on the nature of the deposited material is an area far less commonly investigated. Here, we seek to investigate this by altering the ligands around the Cd metal center to increase the steric hindrance of the precursor and investigate the effect this has on the decomposition properties and the properties of deposited thin-film CdS from these precursors. For this, we report the synthesis of four CdS precursors with xanthate and pyridyl ligands ([Cd(-ethyl xanthate)(3-methyl pyridine)] , [Cd(-ethyl xanthate)(3,5-lutidine)] , [(Cd(isopropyl xanthate)(3-methyl pyridine))] , and [Cd(isopropyl xanthate)(3,5-lutidine)] . These single-source precursors for CdS were fully characterized by elemental analysis, NMR spectroscopy, single-crystal X-ray diffraction (XRD), and thermogravimetric analysis. It was found that even with subtle alterations in the xanthate (-ethyl to isopropyl) and pyridine (3-methyl and 3,5-dimethyl) ligands, a range of hexa-coordinate precursors were formed (two with configuration, one with trans configuration, and one as a one-dimensional (1D) polymer). These four precursors were then used in aerosol-assisted chemical vapor deposition (AACVD) and spin-coating experiments to deposit eight thin films of CdS, which were characterized by Raman spectroscopy, powder X-ray diffraction, and scanning electron microscopy. Comparative quantitative information concerning film thickness and surface roughness was also determined by atomic force microscopy. Finally, the optical properties of all thin films were characterized by ultraviolet-visible (UV-Vis) absorption spectroscopy, from which the band gap of each deposited film was determined to be commensurate with that of bulk CdS ( 2.4 eV).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9157504PMC
http://dx.doi.org/10.1021/acs.inorgchem.2c00616DOI Listing

Publication Analysis

Top Keywords

single-source precursors
12
thin films
12
cds
9
steric hindrance
8
thin-film cds
8
decomposition properties
8
cds precursors
8
xanthate3-methyl pyridine]
8
x-ray diffraction
8
precursors
7

Similar Publications

TiO:Eu nanoparticles with varying europium concentrations were successfully synthesized via a one-pot sol-gel approach using a molecular heterometallic single-source precursor (SSP) Eu-Ti. For comparison, nanomaterials with similar europium levels were also produced by impregnating europium salts onto the same TiO substrate. All the nanomaterials were thoroughly characterized using Eu elemental analysis, powder X-ray diffraction (XRD), scanning (SEM), transmission (TEM), scanning transmission electron microscopy (STEM), Brunauer-Emmett-Teller (BET) analysis, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and photoluminescence (PL).

View Article and Find Full Text PDF

Cyano-Bridged Bimetallic Polymer Network-Derived PdFe Intermetallic for Aqueous Rechargeable Zinc-Air Batteries.

ACS Appl Mater Interfaces

January 2025

Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.

The rational design and synthesis of bifunctionally active and durable oxygen electrocatalysts have garnered significant attention for electrochemical energy conversion and storage. Intermetallic nanostructures are particularly promising for these applications due to their unique catalytic properties and exceptional durability. In this study, we present a fascinating synthetic approach for the direct synthesis of a bifunctional oxygen electrocatalyst based on nitrogen-doped carbon-encapsulated ordered PdFe (o-PdFe@NC) intermetallic, using a cyano-bridged bimetallic single-source precursor tailored for aqueous rechargeable zinc-air batteries (ZABs).

View Article and Find Full Text PDF

Nanocrystals are widely explored for a range of medical, imaging, sensing, and energy conversion applications. CdS nanocrystals have been reported as excellent photocatalysts, with thin film CdS also highly important in photovoltaic devices. To optimise properties of nanocrystals, control over phase, facet, and morphology are vital.

View Article and Find Full Text PDF

Semiconductor devices are constructed from stacks of materials with different electrical properties, making deposition of thin layers central in producing semiconductor chips. The shrinking of electronics has resulted in complex device architectures which require deposition into holes and recessed features. A key parameter for such deposition is the step coverage (SC), which is the ratio of the thickness of material at the bottom and at the top.

View Article and Find Full Text PDF

Dichalcogenoimidodiphosphinate complexes of zinc [Zn{(EPPr)N}], [E=Se,Se; S,Se] were synthesized through metathetical reactions from the dichalcogenoimidodiphosphinate ligands [(EE'PPrNH)] (E, E'=Se, Se; S, Se). These complexes were characterized and used as single-source precursors through Aerosol-Assisted Chemical Vapour Deposition (AACVD) for the deposition of cubic zinc selenide (ZnSe) films on glass substrates. The deposition temperature occurred at 500 and 525 °C, while the flow rates of the carrier gas was 160 and 240 standard cubic centimetre (sccm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!