Evidence for Neuropeptide W Acting as a Physiological Corticotropin-releasing Inhibitory Factor in Male Chickens.

Endocrinology

Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.

Published: July 2022

In vertebrates, adrenocorticotropin (ACTH), released by the pituitary gland, is a critical part of the stress axis and stress response. Generally, the biosynthesis and secretion of ACTH are controlled by both hypothalamic stimulatory factors and inhibitory factors [eg, ACTH-releasing inhibitory factor (CRIF)], but the identity of this CRIF remains unrevealed. We characterized the neuropeptide B (NPB)/neuropeptide W (NPW) system in chickens and found that NPW could directly target the pituitary to inhibit growth hormone (GH) and prolactin (PRL) secretion via neuropeptide B/W receptor 2 (NPBWR2), which is completely different from the mechanism in mammals. The present study first carried out a series of assays to investigate the possibility that NPW acts as a physiological CRIF in chickens. The results showed that (1) NPW could inhibit ACTH synthesis and secretion by inhibiting the 3',5'-cyclic adenosine 5'-monophosphate/protein kinase A signaling cascade in vitro and in vivo; (2) NPBWR2 was expressed abundantly in corticotrophs (ACTH-producing cells), which are located mainly in cephalic lobe of chicken pituitary, as demonstrated by single-cell RNA-sequencing, immunofluorescent staining, and fluorescence in situ hybridization; (3) dexamethasone could stimulate pituitary NPBWR2 and hypothalamic NPW expression in chicks, which was accompanied by the decease of POMC messenger RNA levels, as revealed by in vitro and subcutaneous injection assays; and (4) the temporal expression profiles of NPW-NPBWR2 pair in hypothalamus-pituitary axis and POMC in pituitary were almost unanimous in chicken. Collectively, these findings provide comprehensive evidence for the first time that NPW is a potent physiological CRIF in chickens that plays a core role in suppressing the activity of the stress axis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170129PMC
http://dx.doi.org/10.1210/endocr/bqac073DOI Listing

Publication Analysis

Top Keywords

inhibitory factor
8
stress axis
8
chickens npw
8
physiological crif
8
crif chickens
8
npw
6
pituitary
5
evidence neuropeptide
4
neuropeptide acting
4
acting physiological
4

Similar Publications

Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a crucial signaling adaptor involved in multiple cellular events. However, its role in regulating osteoclastogenesis and energy metabolism remains unclear. Here, we report that TRAF1 promotes osteoclastogenesis and oxidative phosphorylation (OXPHOS).

View Article and Find Full Text PDF

Beta-sitosterol regulates PTGS1 to inhibit gastric cancer cell proliferation and angiogenesis.

Prostaglandins Other Lipid Mediat

January 2025

Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing, 312000, China. Electronic address:

Background: Gastric cancer (GC) is the third leading culprit of cancer-related deaths around the world. Beta-sitosterol (BS) is an important phytosterol that has been proven to have anti-proliferative effects on GC and other tumors. However, mechanisms and targets of BS in cancer are rarely explored.

View Article and Find Full Text PDF

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe respiratory disease with high mortality, mainly due to overactivated oxidative stress and subsequent pyroptosis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), an inducible secretory endoplasmic reticulum (ER) stress protein, inhibits lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the exact molecular mechanism remains unclear.

View Article and Find Full Text PDF

: This study aimed to design and evaluate Chol-PEG micelles and Chol-PEG vesicles as drug delivery system (DDS) carriers and inhibitors of amyloid-β (Aβ) aggregation, a key factor in Alzheimer's disease (AD). : The physical properties of Chol-PEG assemblies were characterized using dynamic light scattering (DLS), electrophoretic light scattering (ELS), and transmission electron microscopy (TEM). Inhibitory effects on Aβ aggregation were assessed via thioflavin T (ThT) assay, circular dichroism (CD) spectroscopy, and native polyacrylamide gel electrophoresis (native-PAGE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!