Objective To investigate the effect of particulate matter 2.5 (PM) dust on autophagy and epithelial-mesenchymal transition (EMT) in human bronchial epithelial 16HBE cells, and to further explore its underlying mechanism. Methods 16HBE cells were stimulated with PM dust, and the cell viability was evaluated by CCK-8 assay. The cellular morphology of 16HBE was observed by microscopy and autophagy activation was observed by dansylcadaverine (MDC) staining. Reactive oxygen species (ROS) level was tested by flow cytometry, and protein levels of LC3-II, LC3-I, E-cadherin and α-SMA were examined by Western blot analysis before and after pretreatment with the autophagy inhibitor 3-MA. Resluts PM dust reduced the survival rate of 16HBE cells. Some cells lost their epithelial characteristics and transformed into mesenchymal cells. Compared with control group, the expression of LC3-II/LC3-I, α-SMA and ROS in PM-treated group showed an increase and E-cadherin was found decreased. In addition, the autophagy inhibitor 3-MA down-regulated the expression of α-SMA, elevated the expression of E-cadherin, and significantly alleviated the ROS level. Conclusion PM induced autophagy and EMT of 16HBE cells, and autophagy enhances EMT.
Download full-text PDF |
Source |
---|
Toxicol Res (Camb)
January 2025
Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong, Kunming, Yunnan 650500, China.
This study explores the role of Argonaute 2 (AGO2) in the induction of apoptosis by arsenic in 16HBE cells and investigates the association between AGO2 expression and arsenic exposure in a human population. By silencing AGO2 with siRNA, we examined its impact on cell viability and apoptosis using CCK-8, HO-PI, and JC-1 assays, complemented by qRT-PCR and Western blot analyses for gene and protein expressions. Our findings revealed a significant correlation between AGO2 expression and levels of exposure to inorganic arsenic (iAs), which was more pronounced than with other arsenic forms such as monomethylarsonic (MMA) and dimethylarsinic acids (DMA).
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Clinical and Public Health Research Center, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Health Center for Women and Children, Chongqing, China; Chongqing Research Center for Prevention & Control of Matermal and Child Disease and Public Health, Chongqing, China. Electronic address:
Nitrogen mustard (NM) is a vesicant agent with potent toxic effects on various tissues. Numerous theories have been proposed to explain its toxic mechanisms, yet research on the interconnections among these theories is lacking. This study focuses on analyzing the characteristics of genes involved in NM-induced bronchial injury within the Comparative Toxicogenomics Database (CTD).
View Article and Find Full Text PDFToxics
December 2024
Department of Public Health, International College, Krirk University, Bangkok 10220, Thailand.
Nanoparticles of neodymium oxide (NPs-NdO) can induce respiratory-related diseases, including lung tissue injury when entering the organism through the respiratory tract. However, it is currently unclear whether they can induce epithelial-mesenchymal transition (EMT) in lung tissue and the related mechanisms. In this study, we investigated the function of circ_009773 in the process of EMT induced by NPs-NdO in lung tissue from in vivo as well as in vitro experiments.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. Electronic address:
Int J Biol Macromol
December 2024
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China. Electronic address:
CVP-2 is a homogeneous polysaccharide extracted from the whole plant of Christia vespertilionis, with an average molecular weight of approximately 92,920 Da. Its main chain consists of repeating units of [3,5)-α-L-Araf-(1] → [5)-α-L-Araf-(1]→, with branches at the C-3 position: branch 1 is α-L-Araf-(1→, and branch 2 is α-L-Araf-(1 → 4)-. Additionally, the structure includes β-D-Gclp-(1 → [4)-β-D-Glap-(1] → 5)-α-L-Araf-(1→.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!